Do you want to publish a course? Click here

Distributed Adaptive Nearest Neighbor Classifier: Algorithm and Theory

99   0   0.0 ( 0 )
 Added by Ruiqi Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

When data is of an extraordinarily large size or physically stored in different locations, the distributed nearest neighbor (NN) classifier is an attractive tool for classification. We propose a novel distributed adaptive NN classifier for which the number of nearest neighbors is a tuning parameter stochastically chosen by a data-driven criterion. An early stopping rule is proposed when searching for the optimal tuning parameter, which not only speeds up the computation but also improves the finite sample performance of the proposed Algorithm. Convergence rate of excess risk of the distributed adaptive NN classifier is investigated under various sub-sample size compositions. In particular, we show that when the sub-sample sizes are sufficiently large, the proposed classifier achieves the nearly optimal convergence rate. Effectiveness of the proposed approach is demonstrated through simulation studies as well as an empirical application to a real-world dataset.



rate research

Read More

We consider a problem of multiclass classification, where the training sample $S_n = {(X_i, Y_i)}_{i=1}^n$ is generated from the model $mathbb P(Y = m | X = x) = eta_m(x)$, $1 leq m leq M$, and $eta_1(x), dots, eta_M(x)$ are unknown $alpha$-Holder continuous functions.Given a test point $X$, our goal is to predict its label. A widely used $mathsf k$-nearest-neighbors classifier constructs estimates of $eta_1(X), dots, eta_M(X)$ and uses a plug-in rule for the prediction. However, it requires a proper choice of the smoothing parameter $mathsf k$, which may become tricky in some situations. In our solution, we fix several integers $n_1, dots, n_K$, compute corresponding $n_k$-nearest-neighbor estimates for each $m$ and each $n_k$ and apply an aggregation procedure. We study an algorithm, which constructs a convex combination of these estimates such that the aggregated estimate behaves approximately as well as an oracle choice. We also provide a non-asymptotic analysis of the procedure, prove its adaptation to the unknown smoothness parameter $alpha$ and to the margin and establish rates of convergence under mild assumptions.
kNN-MT, recently proposed by Khandelwal et al. (2020a), successfully combines pre-trained neural machine translation (NMT) model with token-level k-nearest-neighbor (kNN) retrieval to improve the translation accuracy. However, the traditional kNN algorithm used in kNN-MT simply retrieves a same number of nearest neighbors for each target token, which may cause prediction errors when the retrieved neighbors include noises. In this paper, we propose Adaptive kNN-MT to dynamically determine the number of k for each target token. We achieve this by introducing a light-weight Meta-k Network, which can be efficiently trained with only a few training samples. On four benchmark machine translation datasets, we demonstrate that the proposed method is able to effectively filter out the noises in retrieval results and significantly outperforms the vanilla kNN-MT model. Even more noteworthy is that the Meta-k Network learned on one domain could be directly applied to other domains and obtain consistent improvements, illustrating the generality of our method. Our implementation is open-sourced at https://github.com/zhengxxn/adaptive-knn-mt.
We consider a data corruption scenario in the classical $k$ Nearest Neighbors ($k$-NN) algorithm, that is, the testing data are randomly perturbed. Under such a scenario, the impact of corruption level on the asymptotic regret is carefully characterized. In particular, our theoretical analysis reveals a phase transition phenomenon that, when the corruption level $omega$ is below a critical order (i.e., small-$omega$ regime), the asymptotic regret remains the same; when it is beyond that order (i.e., large-$omega$ regime), the asymptotic regret deteriorates polynomially. Surprisingly, we obtain a negative result that the classical noise-injection approach will not help improve the testing performance in the beginning stage of the large-$omega$ regime, even in the level of the multiplicative constant of asymptotic regret. As a technical by-product, we prove that under different model assumptions, the pre-processed 1-NN proposed in cite{xue2017achieving} will at most achieve a sub-optimal rate when the data dimension $d>4$ even if $k$ is chosen optimally in the pre-processing step.
76 - Teng Qiu , Yongjie Li 2015
Previously in 2014, we proposed the Nearest Descent (ND) method, capable of generating an efficient Graph, called the in-tree (IT). Due to some beautiful and effective features, this IT structure proves well suited for data clustering. Although there exist some redundant edges in IT, they usually have salient features and thus it is not hard to remove them. Subsequently, in order to prevent the seemingly redundant edges from occurring, we proposed the Nearest Neighbor Descent (NND) by adding the Neighborhood constraint on ND. Consequently, clusters automatically emerged, without the additional requirement of removing the redundant edges. However, NND proved still not perfect, since it brought in a new yet worse problem, the over-partitioning problem. Now, in this paper, we propose a method, called the Hierarchical Nearest Neighbor Descent (H-NND), which overcomes the over-partitioning problem of NND via using the hierarchical strategy. Specifically, H-NND uses ND to effectively merge the over-segmented sub-graphs or clusters that NND produces. Like ND, H-NND also generates the IT structure, in which the redundant edges once again appear. This seemingly comes back to the situation that ND faces. However, compared with ND, the redundant edges in the IT structure generated by H-NND generally become more salient, thus being much easier and more reliable to be identified even by the simplest edge-removing method which takes the edge length as the only measure. In other words, the IT structure constructed by H-NND becomes more fitted for data clustering. We prove this on several clustering datasets of varying shapes, dimensions and attributes. Besides, compared with ND, H-NND generally takes less computation time to construct the IT data structure for the input data.
105 - Clement Gauchy , Cyril Feau , 2021
As part of Probabilistic Risk Assessment studies, it is necessary to study the fragility of mechanical and civil engineered structures when subjected to seismic loads. This risk can be measured with fragility curves, which express the probability of failure of the structure conditionally to a seismic intensity measure. The estimation of fragility curves relies on time-consuming numerical simulations, so that careful experimental design is required in order to gain the maximum information on the structures fragility with a limited number of code evaluations. We propose and implement an active learning methodology based on adaptive importance sampling in order to reduce the variance of the training loss. The efficiency of the proposed method in terms of bias, standard deviation and prediction interval coverage are theoretically and numerically characterized.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا