Do you want to publish a course? Click here

Euclid: constraining dark energy coupled to electromagnetism using astrophysical and laboratory data

72   0   0.0 ( 0 )
 Added by Matteo Martinelli
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In physically realistic scalar-field based dynamical dark energy models (including, e.g., quintessence) one naturally expects the scalar field to couple to the rest of the models degrees of freedom. In particular, a coupling to the electromagnetic sector leads to a time (redshift) dependence of the fine-structure constant and a violation of the Weak Equivalence Principle. Here we extend the previous Euclid forecast constraints on dark energy models to this enlarged (but physically more realistic) parameter space, and forecast how well Euclid, together with high-resolution spectroscopic data and local experiments, can constrain these models. Our analysis combines simulated Euclid data products with astrophysical measurements of the fine-structure constant, $alpha$, and local experimental constraints, and includes both parametric and non-parametric methods. For the astrophysical measurements of $alpha$ we consider both the currently available data and a simulated dataset representative of Extremely Large Telescope measurements and expected to be available in the 2030s. Our parametric analysis shows that in the latter case the inclusion of astrophysical and local data improves the Euclid dark energy figure of merit by between $8%$ and $26%$, depending on the correct fiducial model, with the improvements being larger in the null case where the fiducial coupling to the electromagnetic sector is vanishing. These improvements would be smaller with the current astrophysical data. Moreover, we illustrate how a genetic algorithms based reconstruction provides a null test for the presence of the coupling. Our results highlight the importance of complementing surveys like Euclid with external data products, in order to accurately test the wider parameter spaces of physically motivated paradigms.



rate research

Read More

156 - V. C. Busti , R. C. Santos 2011
In this Comment we discuss a recent analysis by Yu et al. [RAA 11, 125 (2011)] about constraints on the smoothness $alpha$ parameter and dark energy models using observational $H(z)$ data. It is argued here that their procedure is conceptually inconsistent with the basic assumptions underlying the adopted Dyer-Roeder approach. In order to properly quantify the influence of the $H(z)$ data on the smoothness $alpha$ parameter, a $chi^2$-test involving a sample of SNe Ia and $H(z)$ data in the context of a flat $Lambda$CDM model is reanalyzed. This result is confronted with an earlier approach discussed by Santos et al. (2008) without $H(z)$ data. In the ($Omega_m, alpha$) plane, it is found that such parameters are now restricted on the intervals $0.66 leq alpha leq 1.0$ and $0.27 leq Omega_m leq 0.37$ within 95.4% confidence level (2$sigma$), and, therefore, fully compatible with the homogeneous case. The basic conclusion is that a joint analysis involving $H(z)$ data can indirectly improve our knowledge about the influence of the inhomogeneities. However, this happens only because the $H(z)$ data provide tighter constraints on the matter density parameter $Omega_m$.
We present three distinct types of models of dark energy in the form of a scalar field which is explicitly coupled to dark matter. Our construction draws from the pull-back formalism for fluids and generalises the fluid action to involve couplings to the scalar field. We investigate the cosmology of each class of model both at the background and linearly perturbed level. We choose a potential for the scalar field and a specific coupling function for each class of models and we compute the Cosmic Microwave Background and matter power spectra.
We discuss fits of unconventional dark energy models to the available data from high-redshift supernovae, distant galaxies and baryon oscillations. The models are based either on brane cosmologies or on Liouville strings in which a relaxation dark energy is provided by a rolling dilaton field (Q-cosmology). Such cosmologies feature the possibility of effective four-dimensional negative-energy dust and/or exotic scaling of dark matter. We find evidence for a negative-energy dust at the current era, as well as for exotic-scaling (a^{-delta}) contributions to the energy density, with delta ~= 4, which could be due to dark matter coupling with the dilaton in Q-cosmology models. We conclude that Q-cosmology fits the data equally well with the LambdaCDM model for a range of parameters that are in general expected from theoretical considerations.
147 - B. M. Rose , G. Aldering , M. Dai 2021
We review the needs of the supernova community for improvements in survey coordination and data sharing that would significantly boost the constraints on dark energy using samples of Type Ia supernovae from the Vera C. Rubin Observatories, the textit{Nancy Grace Roman Space Telescope}, and the textit{Euclid} Mission. We discuss improvements to both statistical and systematic precision that the combination of observations from these experiments will enable. For example, coordination will result in improved photometric calibration, redshift measurements, as well as supernova distances. We also discuss what teams and plans should be put in place now to start preparing for these combined data sets. Specifically, we request coordinated efforts in field selection and survey operations, photometric calibration, spectroscopic follow-up, pixel-level processing, and computing. These efforts will benefit not only experiments with Type Ia supernovae, but all time-domain studies, and cosmology with multi-messenger astrophysics.
Cosmology with a three-form field interacting with cold dark matter is considered. In particular, the mass of the dark matter particles is assumed to depend upon the amplitude of the three-form field invariant. In comparison to coupled scalar field quintessence, the new features include an effective pressure contribution to the field equations that manifests both in the background and perturbation level. The dynamics of the background is analyzed, and new scaling solutions are found. A simple example model leading to a de Sitter expansion without a potential is studied. The Newtonian limit of cosmological perturbations is derived, and it is deduced that the coupling can be very tightly constrained by the large-scale structure data. This is demonstrated with numerical solutions for a model with nontrivial coupling and a quadratic potential.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا