Do you want to publish a course? Click here

Navigation Turing Test (NTT): Learning to Evaluate Human-Like Navigation

98   0   0.0 ( 0 )
 Added by Sam Devlin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

A key challenge on the path to developing agents that learn complex human-like behavior is the need to quickly and accurately quantify human-likeness. While human assessments of such behavior can be highly accurate, speed and scalability are limited. We address these limitations through a novel automated Navigation Turing Test (ANTT) that learns to predict human judgments of human-likeness. We demonstrate the effectiveness of our automated NTT on a navigation task in a complex 3D environment. We investigate six classification models to shed light on the types of architectures best suited to this task, and validate them against data collected through a human NTT. Our best models achieve high accuracy when distinguishing true human and agent behavior. At the same time, we show that predicting finer-grained human assessment of agents progress towards human-like behavior remains unsolved. Our work takes an important step towards agents that more effectively learn complex human-like behavior.



rate research

Read More

344 - Qi Wu , Cheng-Ju Wu , Yixin Zhu 2021
Human-robot collaboration is an essential research topic in artificial intelligence (AI), enabling researchers to devise cognitive AI systems and affords an intuitive means for users to interact with the robot. Of note, communication plays a central role. To date, prior studies in embodied agent navigation have only demonstrated that human languages facilitate communication by instructions in natural languages. Nevertheless, a plethora of other forms of communication is left unexplored. In fact, human communication originated in gestures and oftentimes is delivered through multimodal cues, e.g. go there with a pointing gesture. To bridge the gap and fill in the missing dimension of communication in embodied agent navigation, we propose investigating the effects of using gestures as the communicative interface instead of verbal cues. Specifically, we develop a VR-based 3D simulation environment, named Ges-THOR, based on AI2-THOR platform. In this virtual environment, a human player is placed in the same virtual scene and shepherds the artificial agent using only gestures. The agent is tasked to solve the navigation problem guided by natural gestures with unknown semantics; we do not use any predefined gestures due to the diversity and versatile nature of human gestures. We argue that learning the semantics of natural gestures is mutually beneficial to learning the navigation task--learn to communicate and communicate to learn. In a series of experiments, we demonstrate that human gesture cues, even without predefined semantics, improve the object-goal navigation for an embodied agent, outperforming various state-of-the-art methods.
141 - Pei Xu , Ioannis Karamouzas 2021
Despite significant advancements in the field of multi-agent navigation, agents still lack the sophistication and intelligence that humans exhibit in multi-agent settings. In this paper, we propose a framework for learning a human-like general collision avoidance policy for agent-agent interactions in fully decentralized, multi-agent environments. Our approach uses knowledge distillation with reinforcement learning to shape the reward function based on expert policies extracted from human trajectory demonstrations through behavior cloning. We show that agents trained with our approach can take human-like trajectories in collision avoidance and goal-directed steering tasks not provided by the demonstrations, outperforming the experts as well as learning-based agents trained without knowledge distillation.
Recent research efforts enable study for natural language grounded navigation in photo-realistic environments, e.g., following natural language instructions or dialog. However, existing methods tend to overfit training data in seen environments and fail to generalize well in previously unseen environments. To close the gap between seen and unseen environments, we aim at learning a generalized navigation model from two novel perspectives: (1) we introduce a multitask navigation model that can be seamlessly trained on both Vision-Language Navigation (VLN) and Navigation from Dialog History (NDH) tasks, which benefits from richer natural language guidance and effectively transfers knowledge across tasks; (2) we propose to learn environment-agnostic representations for the navigation policy that are invariant among the environments seen during training, thus generalizing better on unseen environments. Extensive experiments show that environment-agnostic multitask learning significantly reduces the performance gap between seen and unseen environments, and the navigation agent trained so outperforms baselines on unseen environments by 16% (relative measure on success rate) on VLN and 120% (goal progress) on NDH. Our submission to the CVDN leaderboard establishes a new state-of-the-art for the NDH task on the holdout test set. Code is available at https://github.com/google-research/valan.
We present PRM-RL, a hierarchical method for long-range navigation task completion that combines sampling based path planning with reinforcement learning (RL). The RL agents learn short-range, point-to-point navigation policies that capture robot dynamics and task constraints without knowledge of the large-scale topology. Next, the sampling-based planners provide roadmaps which connect robot configurations that can be successfully navigated by the RL agent. The same RL agents are used to control the robot under the direction of the planning, enabling long-range navigation. We use the Probabilistic Roadmaps (PRMs) for the sampling-based planner. The RL agents are constructed using feature-based and deep neural net policies in continuous state and action spaces. We evaluate PRM-RL, both in simulation and on-robot, on two navigation tasks with non-trivial robot dynamics: end-to-end differential drive indoor navigation in office environments, and aerial cargo delivery in urban environments with load displacement constraints. Our results show improvement in task completion over both RL agents on their own and traditional sampling-based planners. In the indoor navigation task, PRM-RL successfully completes up to 215 m long trajectories under noisy sensor conditions, and the aerial cargo delivery completes flights over 1000 m without violating the task constraints in an environment 63 million times larger than used in training.
Mobile robot navigation has seen extensive research in the last decades. The aspect of collaboration with robots and humans sharing workspaces will become increasingly important in the future. Therefore, the next generation of mobile robots needs to be socially-compliant to be accepted by their human collaborators. However, a formal definition of compliance is not straightforward. On the other hand, empowerment has been used by artificial agents to learn complicated and generalized actions and also has been shown to be a good model for biological behaviors. In this paper, we go beyond the approach of classical acf{RL} and provide our agent with intrinsic motivation using empowerment. In contrast to self-empowerment, a robot employing our approach strives for the empowerment of people in its environment, so they are not disturbed by the robots presence and motion. In our experiments, we show that our approach has a positive influence on humans, as it minimizes its distance to humans and thus decreases human travel time while moving efficiently towards its own goal. An interactive user-study shows that our method is considered more social than other state-of-the-art approaches by the participants.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا