Do you want to publish a course? Click here

To quantify the difference of $eta$-inner products in $cal PT$-symmetric theory

71   0   0.0 ( 0 )
 Added by Minyi Huang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we consider a typical continuous two dimensional $cal PT$-symmetric Hamiltonian and propose two different approaches to quantitatively show the difference between the $eta$-inner products. Despite the continuity of Hamiltonian, the $eta$-inner product is not continuous in some sense. It is shown that the difference between the $eta$-inner products of broken and unbroken $cal PT$-symmetry is lower bounded. Moreover, such a property can lead to an uncertainty relation.



rate research

Read More

By embedding a $cal PT$-symmetric (pseudo-Hermitian) system into a large Hermitian one, we disclose the relations between $cal{PT}$-symmetric Hamiltonians and weak measurement theory. We show that the amplification effect in weak measurement on a conventional quantum system can be used to effectively simulate a local broken $cal PT$-symmetric Hamiltonian system, with the pre-selected state in the $cal PT$-symmetric Hamiltonian system and its post-selected state resident in the dilated Hamiltonian system.
The structure of supersymmetry is analyzed systematically in ${cal PT}$ symmetric quantum mechanical theories. We give a detailed description of supersymmetric systems associated with one dimensional ${cal PT}$ symmetric quantum mechanical theories. We show that there is a richer structure present in these theories compared to the conventional theories associated with Hermitian Hamiltonians. We bring out various properties associated with these supersymmetric systems and generalize such quantum mechanical theories to higher dimensions as well as to the case of one dimensional shape invariant potentials.
In this work we first examine transverse and longitudinal fluxes in a $cal PT$-symmetric photonic dimer using a coupled-mode theory. Several surprising understandings are obtained from this perspective: The longitudinal flux shows that the $cal PT$ transition in a dimer can be regarded as a classical effect, despite its analogy to $cal PT$-symmetric quantum mechanics. The longitudinal flux also indicates that the so-called giant amplification in the $cal PT$-symmetric phase is a sub-exponential behavior and does not outperform a single gain waveguide. The transverse flux, on the other hand, reveals that the apparent power oscillations between the gain and loss waveguides in the $cal PT$-symmetric phase can be deceiving in certain cases, where the transverse power transfer is in fact unidirectional. We also show that this power transfer cannot be arbitrarily fast even when the exceptional point is approached. Finally, we go beyond the coupled-mode theory by using the paraxial wave equation and also extend our discussions to a $cal PT$ diamond and a one-dimensional periodic lattice.
We introduce the notion of a ${cal PT}$-symmetric dimer with a $chi^{(2)}$ nonlinearity. Similarly to the Kerr case, we argue that such a nonlinearity should be accessible in a pair of optical waveguides with quadratic nonlinearity and gain and loss, respectively. An interesting feature of the problem is that because of the two harmonics, there exist in general two distinct gain/loss parameters, different values of which are considered herein. We find a number of traits that appear to be absent in the more standard cubic case. For instance, bifurcations of nonlinear modes from the linear solutions occur in two different ways depending on whether the first or the second harmonic amplitude is vanishing in the underlying linear eigenvector. Moreover, a host of interesting bifurcation phenomena appear to occur including saddle-center and pitchfork bifurcations which our parametric variations elucidate. The existence and stability analysis of the stationary solutions is corroborated by numerical time-evolution simulations exploring the evolution of the different configurations, when unstable.
197 - Jia-wen Deng , Uwe Guenther , 2012
Three ways of constructing a non-Hermitian matrix with possible all real eigenvalues are discussed. They are PT symmetry, pseudo-Hermiticity, and generalized PT symmetry. Parameter counting is provided for each class. All three classes of matrices have more real parameters than a Hermitian matrix with the same dimension. The generalized PT-symmetric matrices are most general among the three. All self-adjoint matrices process a generalized PT symmetry. For a given matrix, it can be both PT-symmetric and P-pseudo-Hermitian with respect to some P operators. The relation between corresponding P and P operators is established. The Jordan block structures of each class are discussed. Explicit examples in 2x2 are shown.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا