No Arabic abstract
We introduce the notion of a ${cal PT}$-symmetric dimer with a $chi^{(2)}$ nonlinearity. Similarly to the Kerr case, we argue that such a nonlinearity should be accessible in a pair of optical waveguides with quadratic nonlinearity and gain and loss, respectively. An interesting feature of the problem is that because of the two harmonics, there exist in general two distinct gain/loss parameters, different values of which are considered herein. We find a number of traits that appear to be absent in the more standard cubic case. For instance, bifurcations of nonlinear modes from the linear solutions occur in two different ways depending on whether the first or the second harmonic amplitude is vanishing in the underlying linear eigenvector. Moreover, a host of interesting bifurcation phenomena appear to occur including saddle-center and pitchfork bifurcations which our parametric variations elucidate. The existence and stability analysis of the stationary solutions is corroborated by numerical time-evolution simulations exploring the evolution of the different configurations, when unstable.
We study interaction of a soliton in a parity-time (PT) symmetric coupler which has local perturbation of the coupling constant. Such a defect does not change the PT-symmetry of the system, but locally can achieve the exceptional point. We found that the symmetric solitons after interaction with the defect either transform into breathers or blow up. The dynamics of anti-symmetric solitons is more complex, showing domains of successive broadening of the beam and of the beam splitting in two outwards propagating solitons, in addition to the single breather generation and blow up. All the effects are preserved when the coupling strength in the center of the defect deviates from the exceptional point. If the coupling is strong enough the only observable outcome of the soliton-defect interaction is the generation of the breather.
In this work we first examine transverse and longitudinal fluxes in a $cal PT$-symmetric photonic dimer using a coupled-mode theory. Several surprising understandings are obtained from this perspective: The longitudinal flux shows that the $cal PT$ transition in a dimer can be regarded as a classical effect, despite its analogy to $cal PT$-symmetric quantum mechanics. The longitudinal flux also indicates that the so-called giant amplification in the $cal PT$-symmetric phase is a sub-exponential behavior and does not outperform a single gain waveguide. The transverse flux, on the other hand, reveals that the apparent power oscillations between the gain and loss waveguides in the $cal PT$-symmetric phase can be deceiving in certain cases, where the transverse power transfer is in fact unidirectional. We also show that this power transfer cannot be arbitrarily fast even when the exceptional point is approached. Finally, we go beyond the coupled-mode theory by using the paraxial wave equation and also extend our discussions to a $cal PT$ diamond and a one-dimensional periodic lattice.
Families of analytical solutions are found for symmetric and antisymmetric solitons in the dual-core system with the Kerr nonlinearity and PT-balanced gain and loss. The crucial issue is stability of the solitons. A stability region is obtained in an analytical form, and verified by simulations, for the PT-symmetric solitons. For the antisymmetric ones, the stability border is found in a numerical form. Moving solitons of both types collide elastically. The two soliton species merge into one in the supersymmetric case, with equal coefficients of the gain, loss and inter-core coupling. These solitons feature a subexponential instability, which may be suppressed by periodic switching (management).
We report the spectral features of a phase-shifted parity and time ($mathcal{PT}$)-symmetric fiber Bragg grating (PPTFBG) and demonstrate its functionality as a demultiplexer in the unbroken $mathcal{PT}$-symmetric regime. The length of the proposed system is of the order of millimeters and the lasing spectra in the broken $mathcal{PT}$-symmetric regime can be easily tuned in terms of intensity, bandwidth and wavelength by varying the magnitude of the phase shift in the middle of the structure. Surprisingly, the multi-modal lasing spectra are suppressed by virtue of judiciously selected phase and the gain-loss value. Also, it is possible to obtain sidelobe-less spectra in the broken $mathcal{PT}$-symmetric regime, without a need for an apodization profile, which is a traditional way to tame the unwanted sidelobes. The system is found to show narrow band single-mode lasing behavior for a wide range of phase shift values for given values of gain and loss. Moreover, we report the intensity tunable reflection and transmission characteristics in the unbroken regime via variation in gain and loss. At the exceptional point, the system shows unidirectional wave transport phenomenon independent of the presence of phase shift in the middle of the grating. For the right light incidence direction, the system exhibits zero reflection wavelengths within the stopband at the exceptional point. We also investigate the role of multiple phase shifts placed at fixed locations along the length of the FBG and the variations in the spectra when the phase shift and gain-loss values are tuned. In the broken $mathcal{PT}$-symmetric regime, the presence of multiple phase shifts aids in controlling the number of reflectivity peaks besides controlling their magnitude.
We construct dark solitons in the recently introduced model of the nonlinear dual-core coupler with the mutually balanced gain and loss applied to the two cores, which is a realization of parity-time symmetry in nonlinear optics. The main issue is stability of the dark solitons. The modulational stability of the CW (continuous-wave) background, which supports the dark solitons, is studied analytically, and the full stability is investigated in a numerical form, via computation of eigenvalues for modes of small perturbations. Stability regions are thus identified in the parameter space of the system, and verified in direct simulations. Collisions between stable dark solitons are briefly considered too.