Do you want to publish a course? Click here

Local Aggressive Adversarial Attacks on 3D Point Cloud

96   0   0.0 ( 0 )
 Added by Yiming Sun
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Deep neural networks are found to be prone to adversarial examples which could deliberately fool the model to make mistakes. Recently, a few of works expand this task from 2D image to 3D point cloud by using global point cloud optimization. However, the perturbations of global point are not effective for misleading the victim model. First, not all points are important in optimization toward misleading. Abundant points account considerable distortion budget but contribute trivially to attack. Second, the multi-label optimization is suboptimal for adversarial attack, since it consumes extra energy in finding multi-label victim model collapse and causes instance transformation to be dissimilar to any particular instance. Third, the independent adversarial and perceptibility losses, caring misclassification and dissimilarity separately, treat the updating of each point equally without a focus. Therefore, once perceptibility loss approaches its budget threshold, all points would be stock in the surface of hypersphere and attack would be locked in local optimality. Therefore, we propose a local aggressive adversarial attacks (L3A) to solve above issues. Technically, we select a bunch of salient points, the high-score subset of point cloud according to gradient, to perturb. Then a flow of aggressive optimization strategies are developed to reinforce the unperceptive generation of adversarial examples toward misleading victim models. Extensive experiments on PointNet, PointNet++ and DGCNN demonstrate the state-of-the-art performance of our method against existing adversarial attack methods.



rate research

Read More

Recently, 3D deep learning models have been shown to be susceptible to adversarial attacks like their 2D counterparts. Most of the state-of-the-art (SOTA) 3D adversarial attacks perform perturbation to 3D point clouds. To reproduce these attacks in pseudo physical scenario, a generated adversarial 3D point cloud need to be reconstructed to mesh, which leads to a significant drop in its adversarial effect. In this paper, we propose a strong 3D adversarial attack named Mesh Attack to address this problem by directly performing perturbation on mesh of a 3D object. Specifically, in each iteration of our method, the mesh is first sampled to point cloud by a differentiable sample module. Then a point cloud classifier is used to back-propagate a combined loss to update the mesh vertices. The combined loss includes an adversarial loss to mislead the point cloud classifier and three mesh losses to regularize the mesh to be smooth. Extensive experiments demonstrate that the proposed scheme outperforms SOTA 3D attacks by a significant margin in the pseudo physical scenario. We also achieved SOTA performance under various defenses. Moreover, to the best of our knowledge, our Mesh Attack is the first attempt of adversarial attack on mesh classifier. Our code is available at: {footnotesize{url{https://github.com/cuge1995/Mesh-Attack}}}.
111 - He Wang , Zetian Jiang , Li Yi 2020
In this paper, we examine the long-neglected yet important effects of point sampling patterns in point cloud GANs. Through extensive experiments, we show that sampling-insensitive discriminators (e.g.PointNet-Max) produce shape point clouds with point clustering artifacts while sampling-oversensitive discriminators (e.g.PointNet++, DGCNN) fail to guide valid shape generation. We propose the concept of sampling spectrum to depict the different sampling sensitivities of discriminators. We further study how different evaluation metrics weigh the sampling pattern against the geometry and propose several perceptual metrics forming a sampling spectrum of metrics. Guided by the proposed sampling spectrum, we discover a middle-point sampling-aware baseline discriminator, PointNet-Mix, which improves all existing point cloud generators by a large margin on sampling-related metrics. We point out that, though recent research has been focused on the generator design, the main bottleneck of point cloud GAN actually lies in the discriminator design. Our work provides both suggestions and tools for building future discriminators. We will release the code to facilitate future research.
Vision transformers (ViTs) have demonstrated impressive performance on a series of computer vision tasks, yet they still suffer from adversarial examples. In this paper, we posit that adversarial attacks on transformers should be specially tailored for their architecture, jointly considering both patches and self-attention, in order to achieve high transferability. More specifically, we introduce a dual attack framework, which contains a Pay No Attention (PNA) attack and a PatchOut attack, to improve the transferability of adversarial samples across different ViTs. We show that skipping the gradients of attention during backpropagation can generate adversarial examples with high transferability. In addition, adversarial perturbations generated by optimizing randomly sampled subsets of patches at each iteration achieve higher attack success rates than attacks using all patches. We evaluate the transferability of attacks on state-of-the-art ViTs, CNNs and robustly trained CNNs. The results of these experiments demonstrate that the proposed dual attack can greatly boost transferability between ViTs and from ViTs to CNNs. In addition, the proposed method can easily be combined with existing transfer methods to boost performance.
113 - Xinke Li , Zhirui Chen , Yue Zhao 2021
3D deep learning has been increasingly more popular for a variety of tasks including many safety-critical applications. However, recently several works raise the security issues of 3D deep models. Although most of them consider adversarial attacks, we identify that backdoor attack is indeed a more serious threat to 3D deep learning systems but remains unexplored. We present the backdoor attacks in 3D point cloud with a unified framework that exploits the unique properties of 3D data and networks. In particular, we design two attack approaches on point cloud: the poison-label backdoor attack (PointPBA) and the clean-label backdoor attack (PointCBA). The first one is straightforward and effective in practice, while the latter is more sophisticated assuming there are certain data inspections. The attack algorithms are mainly motivated and developed by 1) the recent discovery of 3D adversarial samples suggesting the vulnerability of deep models under spatial transformation; 2) the proposed feature disentanglement technique that manipulates the feature of the data through optimization methods and its potential to embed a new task. Extensive experiments show the efficacy of the PointPBA with over 95% success rate across various 3D datasets and models, and the more stealthy PointCBA with around 50% success rate. Our proposed backdoor attack in 3D point cloud is expected to perform as a baseline for improving the robustness of 3D deep models.
3D point-clouds and 2D images are different visual representations of the physical world. While human vision can understand both representations, computer vision models designed for 2D image and 3D point-cloud understanding are quite different. Our paper investigates the potential for transferability between these two representations by empirically investigating whether this approach works, what factors affect the transfer performance, and how to make it work even better. We discovered that we can indeed use the same neural net model architectures to understand both images and point-clouds. Moreover, we can transfer pretrained weights from image models to point-cloud models with minimal effort. Specifically, based on a 2D ConvNet pretrained on an image dataset, we can transfer the image model to a point-cloud model by textit{inflating} 2D convolutional filters to 3D then finetuning its input, output, and optionally normalization layers. The transferred model can achieve competitive performance on 3D point-cloud classification, indoor and driving scene segmentation, even beating a wide range of point-cloud models that adopt task-specific architectures and use a variety of tricks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا