Do you want to publish a course? Click here

Ab initio nuclear structure via quantum adiabatic algorithm

111   0   0.0 ( 0 )
 Added by Weijie Du
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Background: Solving nuclear many-body problems with an ab initio approach is widely recognized as a computationally challenging problem. Quantum computers offer a promising path to address this challenge. There are urgent needs to develop quantum algorithms for this purpose. Objective: In this work, we explore the application of the quantum algorithm of adiabatic state preparation with quantum phase estimation in ab initio nuclear structure theory. We focus on solving the low-lying spectra (including both the ground and excited states) of simple nuclear systems. Ideas: The efficiency of this algorithm is hindered by the emergence of small energy gaps (level crossings) during the adiabatic evolution. In order to improve the efficiency, we introduce techniques to avoid level crossings: 1) by suitable design of the reference Hamiltonian; 2) by insertions of perturbation terms to modify the adiabatic path. Results: We illustrate this algorithm by solving the deuteron ground state energy and the spectrum of the deuteron bounded in a harmonic oscillator trap implementing the IBM Qiskit quantum simulator. The quantum results agree well the classical results obtained by matrix diagonalization. Outlook: With our improvements to the efficiency, this algorithm provides a promising tool for investigating the low-lying spectra of complex nuclei on future quantum computers.



rate research

Read More

We propose a new Monte Carlo method called the pinhole trace algorithm for {it ab initio} calculations of the thermodynamics of nuclear systems. For typical simulations of interest, the computational speedup relative to conventional grand-canonical ensemble calculations can be as large as a factor of one thousand. Using a leading-order effective interaction that reproduces the properties of many atomic nuclei and neutron matter to a few percent accuracy, we determine the location of the critical point and the liquid-vapor coexistence line for symmetric nuclear matter with equal numbers of protons and neutrons. We also present the first {it ab initio} study of the density and temperature dependence of nuclear clustering.
The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches - built upon the No-Core Shell Model - that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the $^6$He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of $^9$Be. Further, we discuss applications to the $^7$Be$(p,gamma)^8$B radiative capture. Finally, we highlight our efforts to describe transfer reactions including the $^3$H$(d,n)^4$He fusion.
The extension of ab initio quantum many-body theory to higher accuracy and larger systems is intrinsically limited by the handling of large data objects in form of wave-function expansions and/or many-body operators. In this work we present matrix factorization techniques as a systematically improvable and robust tool to significantly reduce the computational cost in many-body applications at the price of introducing a moderate decomposition error. We demonstrate the power of this approach for the nuclear two-body systems, for many-body perturbation theory calculations of symmetric nuclear matter, and for non-perturbative in-medium similarity renormalization group simulations of finite nuclei. Establishing low-rank expansions of chiral nuclear interactions offers possibilities to reformulate many-body methods in ways that take advantage of tensor factorization strategies.
Nuclear structure models built from phenomenological mean fields, the effective nucleon-nucleon interactions (or Lagrangians), and the realistic bare nucleon-nucleon interactions are reviewed. The success of covariant density functional theory (CDFT) to describe nuclear properties and its influence on Brueckner theory within the relativistic framework are focused upon. The challenges and ambiguities of predictions for unstable nuclei without data or for high-density nuclear matter, arising from relativistic density functionals, are discussed. The basic ideas in building an ab initio relativistic density functional for nuclear structure from ab initio calculations with realistic nucleon-nucleon interactions for both nuclear matter and finite nuclei are presented. The current status of fully self-consistent relativistic Brueckner-Hartree-Fock (RBHF) calculations for finite nuclei or neutron drops (ideal systems composed of a finite number of neutrons and confined within an external field) is reviewed. The guidance and perspectives towards an ab initio covariant density functional theory for nuclear structure derived from the RBHF results are provided.
We discuss the building blocks for a consistent inclusion of chiral three-nucleon (3N) interactions into ab initio nuclear structure calculations beyond the lower p-shell. We highlight important technical developments, such as the similarity renormalization group (SRG) evolution in the 3N sector, a JT-coupled storage scheme for 3N matrix elements with efficient on-the-fly decoupling, and the importance truncated no-core shell model with 3N interactions. Together, these developments make converged ab initio calculations with explicit 3N interactions possible also beyond the lower p-shell. We analyze in detail the impact of various truncations of the SRG-evolved Hamiltonian, in particular the truncation of the harmonic-oscillator model space used for solving the SRG flow equations and the omission of the induced beyond-3N contributions of the evolved Hamiltonian. Both truncations lead to sizable effects in the upper p-shell and beyond and we present options to remedy these truncation effects. The analysis of the different truncations is a first step towards a systematic uncertainty quantification of all stages of the calculation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا