Do you want to publish a course? Click here

Unified ab initio approaches to nuclear structure and reactions

116   0   0.0 ( 0 )
 Added by Petr Navratil
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches - built upon the No-Core Shell Model - that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the $^6$He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of $^9$Be. Further, we discuss applications to the $^7$Be$(p,gamma)^8$B radiative capture. Finally, we highlight our efforts to describe transfer reactions including the $^3$H$(d,n)^4$He fusion.



rate research

Read More

A quantitative and predictive microscopic theoretical framework that can describe reactions induced by $alpha$ particles ($^4$He nuclei) and heavier projectiles is currently lacking. Such a framework would contribute to reducing uncertainty in the modeling of stellar evolution and nucleosynthesis and provide the basis for achieving a comprehensive understanding of the phenomenon of nuclear clustering (the organization of protons and neutrons into distinct substructures within a nucleus). We have developed an efficient and general configuration-interaction framework for the description of low-energy reactions and clustering in light nuclei. The new formalism takes full advantage of powerful second-quantization techniques, enabling the description of $alpha$-$alpha$ scattering and an exploration of clustering in the exotic $^{12}$Be nucleus. We find that the $^4$He($alpha$, $alpha$)$^4$He differential cross section computed with non-locally regulated chiral interactions is in good agreement with experimental data. Our results for $^{12}$Be indicate the presence of strongly mixed helium-cluster states consistent with a molecular-like picture surviving far above the $^6$He+$^6$He threshold, and reveal the strong influence of neutron decay in both the $^{12}$Be spectrum and in the $^6$He($^6$He,$alpha$)$^8$He cross section. We expect that this approach will enable the description of helium burning cross sections and provide insight on how three-nucleon forces influence the emergence of clustering in nuclei.
Background: Solving nuclear many-body problems with an ab initio approach is widely recognized as a computationally challenging problem. Quantum computers offer a promising path to address this challenge. There are urgent needs to develop quantum algorithms for this purpose. Objective: In this work, we explore the application of the quantum algorithm of adiabatic state preparation with quantum phase estimation in ab initio nuclear structure theory. We focus on solving the low-lying spectra (including both the ground and excited states) of simple nuclear systems. Ideas: The efficiency of this algorithm is hindered by the emergence of small energy gaps (level crossings) during the adiabatic evolution. In order to improve the efficiency, we introduce techniques to avoid level crossings: 1) by suitable design of the reference Hamiltonian; 2) by insertions of perturbation terms to modify the adiabatic path. Results: We illustrate this algorithm by solving the deuteron ground state energy and the spectrum of the deuteron bounded in a harmonic oscillator trap implementing the IBM Qiskit quantum simulator. The quantum results agree well the classical results obtained by matrix diagonalization. Outlook: With our improvements to the efficiency, this algorithm provides a promising tool for investigating the low-lying spectra of complex nuclei on future quantum computers.
We propose a new Monte Carlo method called the pinhole trace algorithm for {it ab initio} calculations of the thermodynamics of nuclear systems. For typical simulations of interest, the computational speedup relative to conventional grand-canonical ensemble calculations can be as large as a factor of one thousand. Using a leading-order effective interaction that reproduces the properties of many atomic nuclei and neutron matter to a few percent accuracy, we determine the location of the critical point and the liquid-vapor coexistence line for symmetric nuclear matter with equal numbers of protons and neutrons. We also present the first {it ab initio} study of the density and temperature dependence of nuclear clustering.
Nuclear clustering describes the appearance of structures resembling smaller nuclei such as alpha particles (4He nuclei) within the interior of a larger nucleus. While clustering is important for several well-known examples, much remains to be discovered about the general nature of clustering in nuclei. In this letter we present lattice Monte Carlo calculations based on chiral effective field theory for the ground states of helium, beryllium, carbon, and oxygen isotopes. By computing model-independent measures that probe three- and four-nucleon correlations at short distances, we determine the shape of the alpha clusters and the entanglement of nucleons comprising each alpha cluster with the outside medium. We also introduce a new computational approach called the pinhole algorithm, which solves a long-standing deficiency of auxiliary-field Monte Carlo simulations in computing density correlations relative to the center of mass. We use the pinhole algorithm to determine the proton and neutron density distributions and the geometry of cluster correlations in 12C, 14C, and 16C. The structural similarities among the carbon isotopes suggest that 14C and 16C have excitations analogous to the well-known Hoyle state resonance in 12C.
The extension of ab initio quantum many-body theory to higher accuracy and larger systems is intrinsically limited by the handling of large data objects in form of wave-function expansions and/or many-body operators. In this work we present matrix factorization techniques as a systematically improvable and robust tool to significantly reduce the computational cost in many-body applications at the price of introducing a moderate decomposition error. We demonstrate the power of this approach for the nuclear two-body systems, for many-body perturbation theory calculations of symmetric nuclear matter, and for non-perturbative in-medium similarity renormalization group simulations of finite nuclei. Establishing low-rank expansions of chiral nuclear interactions offers possibilities to reformulate many-body methods in ways that take advantage of tensor factorization strategies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا