Do you want to publish a course? Click here

Learning-Based Robust Resource allocation for D2D Underlaying Cellular Network

67   0   0.0 ( 0 )
 Added by Weihua Wu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we study the resource allocation in D2D underlaying cellular network with uncertain channel state information (CSI). For satisfying the diversity requirements of different users, i.e. the minimum rate requirement for cellular user and the reliability requirement for D2D user, we attempt to maximize the cellular users throughput whilst ensuring a chance constraint for D2D user. Then, a robust resource allocation framework is proposed for solving the highly intractable chance constraint about D2D reliability requirement, where the CSI uncertainties are represented as a deterministic set and the reliability requirement is enforced to hold for any uncertain CSI within it. Then, a symmetrical-geometry-based learning approach is developed to model the uncertain CSI into polytope, ellipsoidal and box. After that, we derive the robust counterpart of the chance constraint under these uncertainty sets as the computation convenient convex sets. To overcome the conservatism of the symmetrical-geometry-based uncertainty sets, we develop a support vector clustering (SVC)-based approach to model uncertain CSI as a compact convex uncertainty set. Based on that, the chance constraint of D2D is converted into a linear convex set. Then, we develop a bisection search-based power allocation algorithm for solving the resource allocation in D2D underlaying cellular network with different robust counterparts. Finally, we conduct the simulation to compare the proposed robust optimization approaches with the non-robust one.



rate research

Read More

The implementation of device-to-device (D2D) underlaying or overlaying pre-existing cellular networks has received much attention due to the potential of enhancing the total cell throughput, reducing power consumption and increasing the instantaneous data rate. In this paper we propose a distributed power allocation scheme for D2D OFDMA communications and, in particular, we consider the two operating modes amenable to a distributed implementation: dedicated and reuse modes. The proposed schemes address the problem of maximizing the users sum rate subject to power constraints, which is known to be nonconvex and, as such, extremely difficult to be solved exactly. We propose here a fresh approach to this well-known problem, capitalizing on the fact that the power allocation problem can be modeled as a potential game. Exploiting the potential games property of converging under better response dynamics, we propose two fully distributed iterative algorithms, one for each operation mode considered, where each user updates sequentially and autonomously its power allocation. Numerical results, computed for several different user scenarios, show that the proposed methods, which converge to one of the local maxima of the objective function, exhibit performance close to the maximum achievable optimum and outperform other schemes presented in the literature.
In this paper, we study the resource allocation problem for a cooperative device-to-device (D2D)-enabled wireless caching network, where each user randomly caches popular contents to its memory and shares the contents with nearby users through D2D links. To enhance the throughput of spectrum sharing D2D links, which may be severely limited by the interference among D2D links, we enable the cooperation among some of the D2D links to eliminate the interference among them. We formulate a joint link scheduling and power allocation problem to maximize the overall throughput of cooperative D2D links (CDLs) and non-cooperative D2D links (NDLs), which is NP-hard. To solve the problem, we decompose it into two subproblems that maximize the sum rates of the CDLs and the NDLs, respectively. For CDL optimization, we propose a semi-orthogonal-based algorithm for joint user scheduling and power allocation. For NDL optimization, we propose a novel low-complexity algorithm to perform link scheduling and develop a Difference of Convex functions (D.C.) programming method to solve the non-convex power allocation problem. Simulation results show that the cooperative transmission can significantly increase both the number of served users and the overall system throughput.
This work proposes a new resource allocation optimization framework for cellular networks using fog or neighborhood-based optimization rather than fully centralized or fully decentralized methods. In neighborhood-based optimization resources are allocated within virtual cells encompassing several base-stations and the users within their coverage area. As the number of base-stations within a virtual cell increases, the framework reverts to centralized optimization, and as this number decreases it reverts to decentralized optimization. We address two tasks that must be carried out in the fog optimization framework: forming the virtual cells and allocating the communication resources in each virtual cell effectively. We propose hierarchical clustering for the formation of the virtual cells given a particular number of such cells. Once the virtual cells are formed, we consider several optimization methods to solve the NP-hard joint channel access and power allocation problem within each virtual cell in order to maximize the sum rate of the entire system. We present numerical results for the system sum rate of each scheme under hierarchical clustering. Our results indicate that proper design of the fog optimization results in little degradation relative to centralized optimization even for a relatively large number of virtual cells. However, improper design leads to a significant decrease in sum rate relative to centralized optimization.
This work presents a new resource allocation optimization framework for cellular networks using neighborhood-based optimization. Under this optimization framework resources are allocated within virtual cells encompassing several base-stations and the users within their coverage area. Incorporating the virtual cell concept enables the utilization of more sophisticated cooperative communication schemes such as coordinated multi-point decoding. We form the virtual cells using hierarchical clustering given a particular number of such cells. Once the virtual cells are formed, we consider a cooperative decoding scheme in which the base-stations in each virtual cell jointly decode the signals that they receive. We propose an iterative solution for the resource allocation problem resulting from the cooperative decoding within each virtual cell. Numerical results for the average system sum rate of our network design under hierarchical clustering are presented. These results indicate that virtual cells with neighborhood-based optimization leads to significant gains in sum rate over optimization within each cell, yet may also have a significant sum-rate penalty compared to fully-centralized optimization.
114 - Rui Yin , Zhiqun Zou , Celimuge Wu 2021
In this paper, a Device-to-Device communication on unlicensed bands (D2D-U) enabled network is studied. To improve the spectrum efficiency (SE) on the unlicensed bands and fit its distributed structure while ensuring the fairness among D2D-U links and the harmonious coexistence with WiFi networks, a distributed joint power and spectrum scheme is proposed. In particular, a parameter, named as price, is defined, which is updated at each D2D-U pair by a online trained Neural network (NN) according to the channel state and traffic load. In addition, the parameters used in the NN are updated by two ways, unsupervised self-iteration and federated learning, to guarantee the fairness and harmonious coexistence. Then, a non-convex optimization problem with respect to the spectrum and power is formulated and solved on each D2D-U link to maximize its own data rate. Numerical simulation results are demonstrated to verify the effectiveness of the proposed scheme.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا