Do you want to publish a course? Click here

Emotion Eliciting Machine: Emotion Eliciting Conversation Generation based on Dual Generator

192   0   0.0 ( 0 )
 Added by Yutao Zhu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recent years have witnessed great progress on building emotional chatbots. Tremendous methods have been proposed for chatbots to generate responses with given emotions. However, the emotion changes of the user during the conversation has not been fully explored. In this work, we study the problem of positive emotion elicitation, which aims to generate responses that can elicit positive emotion of the user, in human-machine conversation. We propose a weakly supervised Emotion Eliciting Machine (EEM) to address this problem. Specifically, we first collect weak labels of user emotion status changes in a conversion based on a pre-trained emotion classifier. Then we propose a dual encoder-decoder structure to model the generation of responses in both positive and negative side based on the changes of the users emotion status in the conversation. An emotion eliciting factor is introduced on top of the dual structure to balance the positive and negative emotional impacts on the generated response during emotion elicitation. The factor also provides a fine-grained controlling manner for emotion elicitation. Experimental results on a large real-world dataset show that EEM outperforms the existing models in generating responses with positive emotion elicitation.



rate research

Read More

For the task of conversation emotion recognition, recent works focus on speaker relationship modeling but ignore the role of utterances emotional tendency.In this paper, we propose a new expression paradigm of sentence-level emotion orientation vector to model the potential correlation of emotions between sentence vectors. Based on it, we design an emotion recognition model, which extracts the sentence-level emotion orientation vectors from the language model and jointly learns from the dialogue sentiment analysis model and extracted sentence-level emotion orientation vectors to identify the speakers emotional orientation during the conversation. We conduct experiments on two benchmark datasets and compare them with the five baseline models.The experimental results show that our model has better performance on all data sets.
293 - Lei Shen , Yang Feng 2020
Emotion-controllable response generation is an attractive and valuable task that aims to make open-domain conversations more empathetic and engaging. Existing methods mainly enhance the emotion expression by adding regularization terms to standard cross-entropy loss and thus influence the training process. However, due to the lack of further consideration of content consistency, the common problem of response generation tasks, safe response, is intensified. Besides, query emotions that can help model the relationship between query and response are simply ignored in previous models, which would further hurt the coherence. To alleviate these problems, we propose a novel framework named Curriculum Dual Learning (CDL) which extends the emotion-controllable response generation to a dual task to generate emotional responses and emotional queries alternatively. CDL utilizes two rewards focusing on emotion and content to improve the duality. Additionally, it applies curriculum learning to gradually generate high-quality responses based on the difficulties of expressing various emotions. Experimental results show that CDL significantly outperforms the baselines in terms of coherence, diversity, and relation to emotion factors.
395 - Jiaju Lin , Jin Jian , Qin Chen 2021
Eliciting knowledge contained in language models via prompt-based learning has shown great potential in many natural language processing tasks, such as text classification and generation. Whereas, the applications for more complex tasks such as event extraction are less studied, since the design of prompt is not straightforward due to the complicated types and arguments. In this paper, we explore to elicit the knowledge from pre-trained language models for event trigger detection and argument extraction. Specifically, we present various joint trigger/argument prompt methods, which can elicit more complementary knowledge by modeling the interactions between different triggers or arguments. The experimental results on the benchmark dataset, namely ACE2005, show the great advantages of our proposed approach. In particular, our approach is superior to the recent advanced methods in the few-shot scenario where only a few samples are used for training.
The consistency of a response to a given post at semantic-level and emotional-level is essential for a dialogue system to deliver human-like interactions. However, this challenge is not well addressed in the literature, since most of the approaches neglect the emotional information conveyed by a post while generating responses. This article addresses this problem by proposing a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post and leverage target information for generating more intelligent responses with appropriately expressed emotions. Extensive experiments on real-world data demonstrate that the proposed method outperforms the state-of-the-art methods in terms of both content coherence and emotion appropriateness.
This paper presents our pioneering effort for emotion recognition in conversation (ERC) with pre-trained language models. Unlike regular documents, conversational utterances appear alternately from different parties and are usually organized as hierarchical structures in previous work. Such structures are not conducive to the application of pre-trained language models such as XLNet. To address this issue, we propose an all-in-one XLNet model, namely DialogXL, with enhanced memory to store longer historical context and dialog-aware self-attention to deal with the multi-party structures. Specifically, we first modify the recurrence mechanism of XLNet from segment-level to utterance-level in order to better model the conversational data. Second, we introduce dialog-aware self-attention in replacement of the vanilla self-attention in XLNet to capture useful intra- and inter-speaker dependencies. Extensive experiments are conducted on four ERC benchmarks with mainstream models presented for comparison. The experimental results show that the proposed model outperforms the baselines on all the datasets. Several other experiments such as ablation study and error analysis are also conducted and the results confirm the role of the critical modules of DialogXL.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا