No Arabic abstract
In order to overcome the accommodation and convergence (A-C) conflict that commonly causes visual fatigue in AR display, we propose a Maxwellian-viewing-super-multi-view (MV-SMV) near-eye display system based on a Pancharatnam-Berry optical element (PBOE). The PBOE, which is constituted with an array of high-efficiency polarization gratings, is implemented to direct different views to different directions simultaneously, constructing the 3D light field. Meanwhile, each view is like a Maxwellian view display that possesses a small viewpoint and a large depth of field (DOF). Hence, the MV-SMV display can display virtual images with correct accommodation depth cue within a large DOF. We implement a proof-of-concept MV-SMV display prototype with 3 x 1 and 3 x 2 viewpoints using a 1D PBOE and a 2D PBOE, respectively, and achieve a DOF of 4.37 diopters experimentally.
The working principle of ordinary refractive lenses can be explained in terms of the space-variant optical phase retardations they introduce, which reshape the optical wavefront curvature and hence affect the subsequent light propagation. These phases, in turn, are due to the varying optical path length seen by light at different transverse positions relative to the lens centre. A similar lensing behavior can however be obtained when the optical phases are introduced by an entirely different mechanism. Here, we consider the geometric phases that arise from the polarization transformations occurring in anisotropic optical media, named after Pancharatnam and Berry. The medium anisotropy axis is taken to be space-variant in the transverse plane and the resulting varying geometric phases give rise to the wavefront reshaping and lensing effect, which however depends also on the input polarization. We describe the realization and characterization of a cylindrical geometric-phase lens that is converging for a given input circular polarization state and diverging for the orthogonal one, which provides one of the simplest possible examples of optical element based on geometric phases. The demonstrated lens is flat and only few microns thick (not including the supporting substrates); moreover, its working wavelength can be tuned and the lensing can be switched on and off by the action of an external control electric field. Other kinds of lenses or more general phase elements inducing different wavefront distortions can be obtained by a similar approach. Besides their potential for optoelectronic technology, these devices offer good opportunities for introducing college-level students to an advanced topic of modern physics, such as the Berry phase, with the help of interesting optical demonstrations.
Perfect vortex beams are the orbital angular momentum (OAM)-carrying beams with fixed annular intensities, which provide a better source of OAM than traditional Laguerre- Gaussian beams. However, ordinary schemes to obtain the perfect vortex beams are usually bulky and unstable. We demonstrate here a novel generation scheme by designing planar Pancharatnam-Berry (PB) phase elements to replace all the elements required. Different from the conventional approaches based on reflective or refractive elements, PB phase elements can dramatically reduce the occupying volume of system. Moreover, the PB phase element scheme is easily developed to produce the perfect vector beams. Therefore, our scheme may provide prominent vortex and vector sources for integrated optical communication and micromanipulation systems.
Novel display technologies aim at providing the users with increasingly immersive experiences. In this regard, it is a long-sought dream to generate three-dimensional (3D) scenes with high resolution and continuous depth, which can be overlaid with the real world. Current attempts to do so, however, fail in providing either truly 3D information, or a large viewing area and angle, strongly limiting the user immersion. Here, we report a proof-of-concept solution for this problem, and realize a compact holographic 3D near-eye display with a large exit pupil of 10mm x 8.66mm. The 3D image is generated from a highly transparent Huygens metasurface hologram with large (>10^8) pixel count and subwavelength pixels, fabricated via deep-ultraviolet immersion photolithography on 300 mm glass wafers. We experimentally demonstrate high quality virtual 3D scenes with ~50k active data points and continuous depth ranging from 0.5m to 2m, overlaid with the real world and easily viewed by naked eye. To do so, we introduce a new design method for holographic near-eye displays that, inherently, is able to provide both parallax and accommodation cues, fundamentally solving the vergence-accommodation conflict that exists in current commercial 3D displays.
Recent developments in the field of photonic spin Hall effect (SHE) offer new opportunities for advantageous measurement of the optical parameters (refractive index, thickness, etc.) of nanostructures and enable spin-based photonics applications in the future. However, it remains a challenge to develop a tunable photonic SHE with any desired spin-dependent splitting for generation and manipulation of spin-polarized photons. Here, we demonstrate experimentally a scheme to realize the photonic SHE tunably by tailoring the space-variant Pancharatnam-Berry phase (PBP). It is shown that light beams whose polarization with a tunable spatial inhomogeneity can contribute to steering the space-variant PBP which creates a spin-dependent geometric phase gradient, thereby possibly realizing a tunable photonic SHE with any desired spin-dependent splitting. Our scheme provides a convenient method to manipulate the spin photon. The results can be extrapolated to other physical system with similar topological origins.
We discuss the propagation of an electromagnetic field in an inhomogeneously anisotropic material where the optic axis is rotated in the transverse plane but is invariant along the propagation direction. In such a configuration, the evolution of an electromagnetic wavepacket is governed by the Pancharatnam-Berry phase (PBP), responsible for the appearance of an effective photonic potential. In a recent paper [A. Alberucci et al., Electromagnetic confinement via spin-orbit interaction in anisotropic dielectrics, ACS Photonics textbf{3}, 2249 (2016)] we demonstrated that the effective potential supports transverse confinement. Here we find the profile of the quasi-modes and show that the photonic potential arises from the Kapitza effect of light. The theoretical results are confirmed by numerical simulations, accounting for the medium birefringence. Finally, we analyze in detail a configuration able to support non-leaky guided modes.