Do you want to publish a course? Click here

Rare-Earth Molecular Crystals with Ultra-narrow Optical Linewidths for Photonic Quantum Technologies

83   0   0.0 ( 0 )
 Added by Diana Serrano
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Rare-earth ions are promising solid state systems to build light-matter interfaces at the quantum level. This relies on their potential to show narrow optical homogeneous linewidths or, equivalently, long-lived optical quantum states. In this letter, we report on europium molecular crystals that exhibit linewidths in the 10s of kHz range, orders of magnitude narrower than other molecular centers. We harness this property to demonstrate efficient optical spin initialization, coherent storage of light using an atomic frequency comb, and optical control of ion-ion interactions towards implementation of quantum gates. These results illustrate the utility of rare-earth molecular crystals as a new platform for photonic quantum technologies that combines highly coherent emitters with the unmatched versatility in composition, structure, and integration capability of molecular materials.



rate research

Read More

We have obtained a low optical inhomogeneous linewidth of 25 MHz in the stoichiometric rare earth crystal EuCl3 .6H2 O by isotopically purifying the crystal in 35 Cl. With this linewidth, an important limit for stoichiometric rare earth crystals is surpassed: the hyperfine structure of 153Eu is spectrally resolved, allowing the whole population of 153Eu3+ ions to be prepared in the same hyperfine state using hole burning techniques. This material also has a very high optical density and can have long coherence times when deuterated. This combination of properties offers new prospects for quantum information applications. We consider two of these, quantum memories and quantum many body studies. We detail the improvements in the performance of current memory protocols possible in these high optical depth crystals, and how certain memory protocols, such as off-resonant Raman memories, can be implemented for the first time in a solid state system. We explain how the strong excitation-induced interactions observed in this material resemble those seen in Rydberg systems, and describe how these interactions can lead to quantum many-body states that could be observed using standard optical spectroscopy techniques.
Rare-earth ion ensembles doped in single crystals are a promising materials system with widespread applications in optical signal processing, lasing, and quantum information processing. Incorporating rare-earth ions into integrated photonic devices could enable compact lasers and modulators, as well as on-chip optical quantum memories for classical and quantum optical applications. To this end, a thin film single crystalline wafer structure that is compatible with planar fabrication of integrated photonic devices would be highly desirable. However, incorporating rare-earth ions into a thin film form-factor while preserving their optical properties has proven challenging. We demonstrate an integrated photonic platform for rare-earth ions doped in a single crystalline thin film on insulator. The thin film is composed of lithium niobate doped with Tm3+. The ions in the thin film exhibit optical lifetimes identical to those measured in bulk crystals. We show narrow spectral holes in a thin film waveguide that require up to 2 orders of magnitude lower power to generate than previously reported bulk waveguides. Our results pave way for scalable on-chip lasers, optical signal processing devices, and integrated optical quantum memories.
All-optical addressing and control of single solid-state based qubits allows for scalable architectures of quantum devices such as quantum networks and quantum simulators. So far, all-optical addressing of qubits was demonstrated only for color centers in diamond and quantum dots. Here, we demonstrate generation of coherent dark state of a single rare earth ion in a solid, namely a cerium ion in yttrium aluminum garnet (YAG). The dark state was formed under the condition of coherent population trapping. Furthermore, high-resolution spectroscopic studies of native and implanted single Ce ions have been performed. They revealed narrow and spectrally stable optical transitions between the spin sublevels of the ground and excited optical states, indicating the feasibility of interfacing single photons with a single electron spin of a cerium ion.
The long dreamed quantum internet would consist of a network of quantum nodes (solid-state or atomic systems) linked by flying qubits, naturally based on photons, travelling over long distances at the speed of light, with negligible decoherence. A key component is a light source, able to provide single or entangled photon pairs. Among the different platforms, semiconductor quantum dots are very attractive, as they can be integrated with other photonic and electronic components in miniaturized chips. In the early 1990s two approaches were developed to synthetize self-assembled epitaxial semiconductor quantum dots (QDs), or artificial atoms, namely the Stranski-Krastanov (SK) and the droplet epitaxy (DE) method. Because of its robustness and simplicity, the SK method became the workhorse to achieve several breakthroughs in both fundamental and technological areas. The need for specific emission wavelengths or structural and optical properties has nevertheless motivated further research on the DE method and its more recent development, the local-droplet-etching (LDE), as complementary routes to obtain high quality semiconductor nanostructures. The recent reports on the generation of highly entangled photon pairs, combined with good photon indistinguishability, suggest that DE and LDE QDs may complement (and sometime even outperform) conventional SK InGaAs QDs as quantum emitters. We present here a critical survey of the state of the art of DE and LDE, highlighting the advantages and weaknesses, the obtained achievements and the still open challenges, in view of applications in quantum communication and technology.
A sharp resonance line that appears in three-photon transitions between the $^{1}S_{0}$ and $^{3}P_{0}$ states of alkaline earth and Yb atoms is proposed as an optical frequency standard. This proposal permits the use of the even isotopes, in which the clock transition is narrower than in proposed clocks using the odd isotopes and the energy interval is not affected by external magnetic fields or the polarization of trapping light. The method has the unique feature that the width and rate of the clock transition can be continuously adjusted from the $MHz$ level to sub-$mHz$ without loss of signal amplitude by varying the intensities of the three optical beams. Doppler and recoil effects can be eliminated by proper alignment of the three optical beams or by point confinement in a lattice trap. The three beams can be mixed to produce the optical frequency corresponding to the $^{3}P_{0}$ - $^{1}S_{0}$ clock interval.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا