Do you want to publish a course? Click here

The Neutrino Magnetic Moment Portal

155   0   0.0 ( 0 )
 Added by Joachim Kopp
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We discuss neutrino magnetic moments as a way of constraining physics beyond the Standard Model. In fact, new physics at the TeV scale can easily generate observable neutrino magnetic moments, and there exists a multitude of ways of probing them. We highlight in particular direct dark matter detection experiments (which are sensitive to neutrino magnetic moments because of the predicted modifications to the solar neutrino scattering rate), stellar cooling, and cosmological constraints.



rate research

Read More

We revisit the physics of neutrino magnetic moments, focusing in particular on the case where the right-handed, or sterile, neutrinos are heavier (up to several MeV) than the left-handed Standard Model neutrinos. The discussion is centered around the idea of detecting an upscattering event mediated by a transition magnetic moment in a neutrino or dark matter experiment. Considering neutrinos from all known sources, as well as including all available data from XENON1T and Borexino, we derive the strongest up-to-date exclusion limits on the active-to-sterile neutrino transition magnetic moment. We then study complementary constraints from astrophysics and cosmology, performing, in particular, a thorough analysis of BBN. We find that these data sets scrutinize most of the relevant parameter space. Explaining the XENON1T excess with transition magnetic moments is marginally possible if conservative assumptions are adopted regarding the supernova 1987A and CMB constraints. Finally, we discuss model-building challenges that arise in scenarios that feature large magnetic moments while keeping neutrino masses well below 1 eV. We present a successful ultraviolet-complete model of this type based on TeV-scale leptoquarks, establishing links with muon magnetic moment, B physics anomalies, and collider searches at the LHC.
In this paper we provide an updated analysis of the neutrino magnetic moments (NMMs), discussing both the constraints on the magnitudes of the three transition moments Lambda_i as well as the role of the CP violating phases present both in the mixing matrix and in the NMM matrix. The scattering of solar neutrinos off electrons in Borexino provides the most stringent restrictions, due to its robust statistics and the low energies observed, below 1 MeV. Our new limit on the effective neutrino magnetic moment which follows from the most recent Borexino data is 3.1 x 10^-11 mu_B at 90% C.L. This corresponds to the individual transition magnetic moment constraints: |Lambda_1| < 5.6 x10^-11 mu_B, |Lambda_2| < 4.0 x 10^-11 mu_B, and |Lambda_3| < 3.1 x 10^-11 mu_B (90% C.L.), irrespective of any complex phase. Indeed, the incoherent admixture of neutrino mass eigenstates present in the solar flux makes Borexino insensitive to the Majorana phases present in the NMM matrix. For this reason we also provide a global analysis including the case of reactor and accelerator neutrino sources, and presenting the resulting constraints for different values of the relevant CP phases. Improved reactor and accelerator neutrino experiments will be needed in order to underpin the full profile of the neutrino electromagnetic properties.
Neutrino magnetic moment ($ u$MM) is an important property of massive neutrinos. The recent anomalous excess at few keV electronic recoils observed by the Xenon1T collaboration might indicate a $sim 2.2times10^{-11} mu_B$ effective neutrino magnetic moment ($mu_ u^{eff}$) from solar neutrinos. Therefore, it is essential to carry out the $ u$MM searches at a different experiment to confirm or exclude such hypothesis. We study the feasibility of doing $ u$MM measurement with 4 kton active mass at Jinping neutrino experiment using electron recoil data from both natural and artificial neutrino sources. The sensitivity of $mu_ u^{eff}$ can reach $1.2times10^{-11}mu_B$ at 90% C.L. with 10-year data taking of solar neutrinos. Besides the intrinsic low energy background $^{14}$C in the liquid scintillator, we find the sensitivity to $ u$MM is highly correlated with the systematic uncertainties of $pp$ and $^{85}$Kr. Reducing systematic uncertainties ($pp$ and $^{85}$Kr) and the intrinsic background ($^{14}$C and $^{85}$Kr) can help to improve sensitivities below these levels and reach the region of astrophysical interest. With a 3 mega-Curie (MCi) artificial neutrino source $^{51}$Cr installed at Jinping neutrino detector for 55 days, it could give us a sensitivity to the electron neutrino magnetic moment ($mu_{ u_e}$) with $1.1times10^{-11} mu_B$ at 90% C.L.. With the combination of those two measurements, the flavor structure of the neutrino magnetic moment can be also probed at Jinping.
Axion like particles(ALPs) and right handed neutrinos~(RHNs) are two well-motivated dark matter(DM) candidates. However, these two particles have a completely different origin. Axion was proposed to solve the Strong CP problem, whereas RHNs were introduced to explain light neutrino masses through seesaw mechanisms. We study the case of ALP portal RHN DM taking into account existing constraints on ALPs. We consider the leading effective operators mediating interactions between the ALP and SM particles and three RHNs to generate light neutrino masses through type-I seesaw. Further, ALP-RHN neutrino coupling is introduced to generalize the model which is restricted by the relic density and indirect detection constraint.
We discuss the limits on the neutrino magnetic moment and hypothetical interactions with a hidden unparticle sector, coming from the first neutrino data release of the Borexino experiment. The observed spectrum in Borexino depends weakly on the solar model used in the analysis, since most of the signal comes from the mono-energetic 7Be neutrinos. This fact allows us to calibrate the nu-e scattering cross section through the spectral shape. In this way, we have derived a limit on the magnetic moment for the neutrinos coming from the Sun (in which a nu_mu and nu_tau component is present): mu_nu<8.4E-11 mu_B (90%CL) which is comparable with those obtained from low energy reactor experiments. Moreover, we improve the previous upper limit on magnetic moment of the nu_tau by three orders of magnitude and the limit on the coupling constant of the neutrino with a hidden unparticle sector.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا