Do you want to publish a course? Click here

Towards Navigation by Reasoning over Spatial Configurations

75   0   0.0 ( 0 )
 Added by Yue Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We deal with the navigation problem where the agent follows natural language instructions while observing the environment. Focusing on language understanding, we show the importance of spatial semantics in grounding navigation instructions into visual perceptions. We propose a neural agent that uses the elements of spatial configurations and investigate their influence on the navigation agents reasoning ability. Moreover, we model the sequential execution order and align visual objects with spatial configurations in the instruction. Our neural agent improves strong baselines on the seen environments and shows competitive performance on the unseen environments. Additionally, the experimental results demonstrate that explicit modeling of spatial semantic elements in the instructions can improve the grounding and spatial reasoning of the model.



rate research

Read More

We focus on the task of reasoning over paragraph effects in situation, which requires a model to understand the cause and effect described in a background paragraph, and apply the knowledge to a novel situation. Existing works ignore the complicated reasoning process and solve it with a one-step black box model. Inspired by human cognitive processes, in this paper we propose a sequential approach for this task which explicitly models each step of the reasoning process with neural network modules. In particular, five reasoning modules are designed and learned in an end-to-end manner, which leads to a more interpretable model. Experimental results on the ROPES dataset demonstrate the effectiveness and explainability of our proposed approach.
Spatial Reasoning from language is essential for natural language understanding. Supporting it requires a representation scheme that can capture spatial phenomena encountered in language as well as in images and videos. Existing spatial representations are not sufficient for describing spatial configurations used in complex tasks. This paper extends the capabilities of existing spatial representation languages and increases coverage of the semantic aspects that are needed to ground the spatial meaning of natural language text in the world. Our spatial relation language is able to represent a large, comprehensive set of spatial concepts crucial for reasoning and is designed to support the composition of static and dynamic spatial configurations. We integrate this language with the Abstract Meaning Representation(AMR) annotation schema and present a corpus annotated by this extended AMR. To exhibit the applicability of our representation scheme, we annotate text taken from diverse datasets and show how we extend the capabilities of existing spatial representation languages with the fine-grained decomposition of semantics and blend it seamlessly with AMRs of sentences and discourse representations as a whole.
106 - Ming Tu , Jing Huang , Xiaodong He 2020
Recently Graph Neural Network (GNN) has been applied successfully to various NLP tasks that require reasoning, such as multi-hop machine reading comprehension. In this paper, we consider a novel case where reasoning is needed over graphs built from sequences, i.e. graph nodes with sequence data. Existing GNN models fulfill this goal by first summarizing the node sequences into fixed-dimensional vectors, then applying GNN on these vectors. To avoid information loss inherent in the early summarization and make sequential labeling tasks on GNN output feasible, we propose a new type of GNN called Graph Sequential Network (GSN), which features a new message passing algorithm based on co-attention between a node and each of its neighbors. We validate the proposed GSN on two NLP tasks: interpretable multi-hop reading comprehension on HotpotQA and graph based fact verification on FEVER. Both tasks require reasoning over multiple documents or sentences. Our experimental results show that the proposed GSN attains better performance than the standard GNN based methods.
We consider the task of answering complex multi-hop questions using a corpus as a virtual knowledge base (KB). In particular, we describe a neural module, DrKIT, that traverses textual data like a KB, softly following paths of relations between mentions of entities in the corpus. At each step the module uses a combination of sparse-matrix TFIDF indices and a maximum inner product search (MIPS) on a special index of contextual representations of the mentions. This module is differentiable, so the full system can be trained end-to-end using gradient based methods, starting from natural language inputs. We also describe a pretraining scheme for the contextual representation encoder by generating hard negative examples using existing knowledge bases. We show that DrKIT improves accuracy by 9 points on 3-hop questions in the MetaQA dataset, cutting the gap between text-based and KB-based state-of-the-art by 70%. On HotpotQA, DrKIT leads to a 10% improvement over a BERT-based re-ranking approach to retrieving the relevant passages required to answer a question. DrKIT is also very efficient, processing 10-100x more queries per second than existing multi-hop systems.
Imprecise composite location references formed using ad hoc spatial expressions in English text makes the geocoding task challenging for both inference and evaluation. Typically such spatial expressions fill in unestablished areas with new toponyms for finer spatial referents. For example, the spatial extent of the ad hoc spatial expression north of or 50 minutes away from in relation to the toponym Dayton, OH refers to an ambiguous, imprecise area, requiring translation from this qualitative representation to a quantitative one with precise semantics using systems such as WGS84. Here we highlight the challenges of geocoding such referents and propose a formal representation that employs background knowledge, semantic approximations and rules, and fuzzy linguistic variables. We also discuss an appropriate evaluation technique for the task that is based on human contextualized and subjective judgment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا