Do you want to publish a course? Click here

Towards Interpretable Reasoning over Paragraph Effects in Situation

85   0   0.0 ( 0 )
 Added by Mucheng Ren
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We focus on the task of reasoning over paragraph effects in situation, which requires a model to understand the cause and effect described in a background paragraph, and apply the knowledge to a novel situation. Existing works ignore the complicated reasoning process and solve it with a one-step black box model. Inspired by human cognitive processes, in this paper we propose a sequential approach for this task which explicitly models each step of the reasoning process with neural network modules. In particular, five reasoning modules are designed and learned in an end-to-end manner, which leads to a more interpretable model. Experimental results on the ROPES dataset demonstrate the effectiveness and explainability of our proposed approach.



rate research

Read More

We deal with the navigation problem where the agent follows natural language instructions while observing the environment. Focusing on language understanding, we show the importance of spatial semantics in grounding navigation instructions into visual perceptions. We propose a neural agent that uses the elements of spatial configurations and investigate their influence on the navigation agents reasoning ability. Moreover, we model the sequential execution order and align visual objects with spatial configurations in the instruction. Our neural agent improves strong baselines on the seen environments and shows competitive performance on the unseen environments. Additionally, the experimental results demonstrate that explicit modeling of spatial semantic elements in the instructions can improve the grounding and spatial reasoning of the model.
Multi-paragraph reasoning is indispensable for open-domain question answering (OpenQA), which receives less attention in the current OpenQA systems. In this work, we propose a knowledge-enhanced graph neural network (KGNN), which performs reasoning over multiple paragraphs with entities. To explicitly capture the entities relatedness, KGNN utilizes relational facts in knowledge graph to build the entity graph. The experimental results show that KGNN outperforms in both distractor and full wiki settings than baselines methods on HotpotQA dataset. And our further analysis illustrates KGNN is effective and robust with more retrieved paragraphs.
Qualitative relationships illustrate how changing one property (e.g., moving velocity) affects another (e.g., kinetic energy) and constitutes a considerable portion of textual knowledge. Current approaches use either semantic parsers to transform natural language inputs into logical expressions or a black-box model to solve them in one step. The former has a limited application range, while the latter lacks interpretability. In this work, we categorize qualitative reasoning tasks into two types: prediction and comparison. In particular, we adopt neural network modules trained in an end-to-end manner to simulate the two reasoning processes. Experiments on two qualitative reasoning question answering datasets, QuaRTz and QuaRel, show our methods effectiveness and generalization capability, and the intermediate outputs provided by the modules make the reasoning process interpretable.
Objective: To combine medical knowledge and medical data to interpretably predict the risk of disease. Methods: We formulated the disease prediction task as a random walk along a knowledge graph (KG). Specifically, we build a KG to record relationships between diseases and risk factors according to validated medical knowledge. Then, a mathematical object walks along the KG. It starts walking at a patient entity, which connects the KG based on the patient current diseases or risk factors and stops at a disease entity, which represents the predicted disease. The trajectory generated by the object represents an interpretable disease progression path of the given patient. The dynamics of the object are controlled by a policy-based reinforcement learning (RL) module, which is trained by electronic health records (EHRs). Experiments: We utilized two real-world EHR datasets to evaluate the performance of our model. In the disease prediction task, our model achieves 0.743 and 0.639 in terms of macro area under the curve (AUC) in predicting 53 circulation system diseases in the two datasets, respectively. This performance is comparable to the commonly used machine learning (ML) models in medical research. In qualitative analysis, our clinical collaborator reviewed the disease progression paths generated by our model and advocated their interpretability and reliability. Conclusion: Experimental results validate the proposed model in interpretably evaluating and optimizing disease prediction. Significance: Our work contributes to leveraging the potential of medical knowledge and medical data jointly for interpretable prediction tasks.
Word2vec (Mikolov et al., 2013) has proven to be successful in natural language processing by capturing the semantic relationships between different words. Built on top of single-word embeddings, paragraph vectors (Le and Mikolov, 2014) find fixed-length representations for pieces of text with arbitrary lengths, such as documents, paragraphs, and sentences. In this work, we propose a novel interpretation for neural-network-based paragraph vectors by developing an unsupervised generative model whose maximum likelihood solution corresponds to traditional paragraph vectors. This probabilistic formulation allows us to go beyond point estimates of parameters and to perform Bayesian posterior inference. We find that the entropy of paragraph vectors decreases with the length of documents, and that information about posterior uncertainty improves performance in supervised learning tasks such as sentiment analysis and paraphrase detection.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا