Do you want to publish a course? Click here

An Empirical Comparison of Bias Reduction Methods on Real-World Problems in High-Stakes Policy Settings

80   0   0.0 ( 0 )
 Added by Hemank Lamba
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Applications of machine learning (ML) to high-stakes policy settings -- such as education, criminal justice, healthcare, and social service delivery -- have grown rapidly in recent years, sparking important conversations about how to ensure fair outcomes from these systems. The machine learning research community has responded to this challenge with a wide array of proposed fairness-enhancing strategies for ML models, but despite the large number of methods that have been developed, little empirical work exists evaluating these methods in real-world settings. Here, we seek to fill this research gap by investigating the performance of several methods that operate at different points in the ML pipeline across four real-world public policy and social good problems. Across these problems, we find a wide degree of variability and inconsistency in the ability of many of these methods to improve model fairness, but post-processing by choosing group-specific score thresholds consistently removes disparities, with important implications for both the ML research community and practitioners deploying machine learning to inform consequential policy decisions.



rate research

Read More

In order to process efficiently ever-higher dimensional data such as images, sentences, or audio recordings, one needs to find a proper way to reduce the dimensionality of such data. In this regard, SVD-based methods including PCA and Isomap have been extensively used. Recently, a neural network alternative called autoencoder has been proposed and is often preferred for its higher flexibility. This work aims to show that PCA is still a relevant technique for dimensionality reduction in the context of classification. To this purpose, we evaluated the performance of PCA compared to Isomap, a deep autoencoder, and a variational autoencoder. Experiments were conducted on three commonly used image datasets: MNIST, Fashion-MNIST, and CIFAR-10. The four different dimensionality reduction techniques were separately employed on each dataset to project data into a low-dimensional space. Then a k-NN classifier was trained on each projection with a cross-validated random search over the number of neighbours. Interestingly, our experiments revealed that k-NN achieved comparable accuracy on PCA and both autoencoders projections provided a big enough dimension. However, PCA computation time was two orders of magnitude faster than its neural network counterparts.
Off-policy prediction -- learning the value function for one policy from data generated while following another policy -- is one of the most challenging subproblems in reinforcement learning. This paper presents empirical results with eleven prominent off-policy learning algorithms that use linear function approximation: five Gradient-TD methods, two Emphatic-TD methods, Off-policy TD($lambda$), Vtrace, a
Many off-policy prediction learning algorithms have been proposed in the past decade, but it remains unclear which algorithms learn faster than others. We empirically compare 11 off-policy prediction learning algorithms with linear function approximation on two small tasks: the Rooms task, and the High Variance Rooms task. The tasks are designed such that learning fast in them is challenging. In the Rooms task, the product of importance sampling ratios can be as large as $2^{14}$ and can sometimes be two. To control the high variance caused by the product of the importance sampling ratios, step size should be set small, which in turn slows down learning. The High Variance Rooms task is more extreme in that the product of the ratios can become as large as $2^{14}times 25$. This paper builds upon the empirical study of off-policy prediction learning algorithms by Ghiassian and Sutton (2021). We consider the same set of algorithms as theirs and employ the same experimental methodology. The algorithms considered are: Off-policy TD($lambda$), five Gradient-TD algorithms, two Emphatic-TD algorithms, Tree Backup($lambda$), Vtrace($lambda$), and ABTD($zeta$). We found that the algorithms performance is highly affected by the variance induced by the importance sampling ratios. The data shows that Tree Backup($lambda$), Vtrace($lambda$), and ABTD($zeta$) are not affected by the high variance as much as other algorithms but they restrict the effective bootstrapping parameter in a way that is too limiting for tasks where high variance is not present. We observed that Emphatic TD($lambda$) tends to have lower asymptotic error than other algorithms, but might learn more slowly in some cases. We suggest algorithms for practitioners based on their problem of interest, and suggest approaches that can be applied to specific algorithms that might result in substantially improved algorithms.
Clinical machine learning models experience significantly degraded performance in datasets not seen during training, e.g., new hospitals or populations. Recent developments in domain generalization offer a promising solution to this problem by creating models that learn invariances across environments. In this work, we benchmark the performance of eight domain generalization methods on multi-site clinical time series and medical imaging data. We introduce a framework to induce synthetic but realistic domain shifts and sampling bias to stress-test these methods over existing non-healthcare benchmarks. We find that current domain generalization methods do not consistently achieve significant gains in out-of-distribution performance over empirical risk minimization on real-world medical imaging data, in line with prior work on general imaging datasets. However, a subset of realistic induced-shift scenarios in clinical time series data do exhibit limited performance gains. We characterize these scenarios in detail, and recommend best practices for domain generalization in the clinical setting.
Infinite horizon off-policy policy evaluation is a highly challenging task due to the excessively large variance of typical importance sampling (IS) estimators. Recently, Liu et al. (2018a) proposed an approach that significantly reduces the variance of infinite-horizon off-policy evaluation by estimating the stationary density ratio, but at the cost of introducing potentially high biases due to the error in density ratio estimation. In this paper, we develop a bias-reduced augmentation of their method, which can take advantage of a learned value function to obtain higher accuracy. Our method is doubly robust in that the bias vanishes when either the density ratio or the value function estimation is perfect. In general, when either of them is accurate, the bias can also be reduced. Both theoretical and empirical results show that our method yields significant advantages over previous methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا