No Arabic abstract
Quantum simulators have made a remarkable progress towards exploring the dynamics of many-body systems, many of which offer a formidable challenge to both theoretical and numerical methods. While state-of-the-art quantum simulators are in principle able to simulate quantum dynamics well outside the domain of classical computers, they are noisy and limited in the variability of the initial state of the dynamics and the observables that can be measured. Despite these limitations, here we show that such a quantum simulator can be used to in-effect solve for the dynamics of a many-body system. We develop an efficient numerical technique that facilitates classical simulations in regimes not accessible to exact calculations or other established numerical techniques. The method is based on approximations that are well suited to describe localized one-dimensional Fermi-Hubbard systems. Since this new method does not have an error estimate and the approximations do not hold in general, we use a neutral-atom Fermi-Hubbard quantum simulator with $L_{text{exp}}simeq290$ lattice sites to benchmark its performance in terms of accuracy and convergence for evolution times up to $700$ tunnelling times. We then use these approximations in order to derive a simple prediction of the behaviour of interacting Bloch oscillations for spin-imbalanced Fermi-Hubbard systems, which we show to be in quantitative agreement with experimental results. Finally, we demonstrate that the convergence of our method is the slowest when the entanglement depth developed in the many-body system we consider is neither too small nor too large. This represents a promising regime for near-term applications of quantum simulators.
Finding the global minimum in a rugged potential landscape is a computationally hard task, often equivalent to relevant optimization problems. Simulated annealing is a computational technique which explores the configuration space by mimicking thermal noise. By slow cooling, it freezes the system in a low-energy configuration, but the algorithm often gets stuck in local minima. In quantum annealing, the thermal noise is replaced by controllable quantum fluctuations, and the technique can be implemented in modern quantum simulators. However, quantum-adiabatic schemes become prohibitively slow in the presence of quasidegeneracies. Here we propose a strategy which combines ideas from simulated annealing and quantum annealing. In such hybrid algorithm, the outcome of a quantum simulator is processed on a classical device. While the quantum simulator explores the configuration space by repeatedly applying quantum fluctuations and performing projective measurements, the classical computer evaluates each configuration and enforces a lowering of the energy. We have simulated this algorithm for small instances of the random energy model, showing that it potentially outperforms both simulated thermal annealing and adiabatic quantum annealing. It becomes most efficient for problems involving many quasi-degenerate ground states.
Nascent platforms for programmable quantum simulation offer unprecedented access to new regimes of far-from-equilibrium quantum many-body dynamics in (approximately) isolated systems. Here, achieving precise control over quantum many-body entanglement is an essential task for quantum sensing and computation. Extensive theoretical work suggests that these capabilities can enable dynamical phases and critical phenomena that exhibit topologically-robust methods to create, protect, and manipulate quantum entanglement that self-correct against large classes of errors. However, to date, experimental realizations have been confined to classical (non-entangled) symmetry-breaking orders. In this work, we demonstrate an emergent dynamical symmetry protected topological phase (EDSPT), in a quasiperiodically-driven array of ten $^{171}text{Yb}^+$ hyperfine qubits in Honeywells System Model H1 trapped-ion quantum processor. This phase exhibits edge qubits that are dynamically protected from control errors, cross-talk, and stray fields. Crucially, this edge protection relies purely on emergent dynamical symmetries that are absolutely stable to generic coherent perturbations. This property is special to quasiperiodically driven systems: as we demonstrate, the analogous edge states of a periodically driven qubit-array are vulnerable to symmetry-breaking errors and quickly decohere. Our work paves the way for implementation of more complex dynamical topological orders that would enable error-resilient techniques to manipulate quantum information.
The discrete time crystal (DTC) is a recently discovered phase of matter that spontaneously breaks time-translation symmetry. Disorder-induced many-body-localization is required to stabilize a DTC to arbitrary times, yet an experimental investigation of this localized regime has proven elusive. Here, we observe the hallmark signatures of a many-body-localized DTC using a novel quantum simulation platform based on individually controllable $^{13}$C nuclear spins in diamond. We demonstrate the characteristic long-lived spatiotemporal order and confirm that it is robust for generic initial states. Our results are consistent with the realization of an out-of-equilibrium Floquet phase of matter and establish a programmable quantum simulator based on solid-state spins for exploring many-body physics.
We investigate dynamical quantum phase transitions in disordered quantum many-body models that can support many-body localized phases. Employing $l$-bits formalism, we lay out the conditions for which singularities indicative of the transitions appear in the context of many-body localization. Using the combination of the mapping onto $l$-bits and exact diagonalization results, we explicitly demonstrate the presence of these singularities for a candidate model that features many-body localization. Our work paves the way for understanding dynamical quantum phase transitions in the context of many-body localization, and elucidating whether different phases of the latter can be detected from analyzing the former. The results presented are experimentally accessible with state-of-the-art ultracold-atom and ion-trap setups.
The symmetries associated with discrete-time quantum walks (DTQWs) and the flexibilities in controlling their dynamical parameters allow to create a large number of topological phases. An interface in position space, which separates two regions with different topological numbers, can, for example, be effectively modelled using different coin parameters for the walk on either side of the interface. Depending on the neighbouring numbers, this can lead to localized states in one-dimensional configurations and here we carry out a detailed study into the strength of such localized states. We show that it can be related to the amount of entanglement created by the walks, with minima appearing for strong localizations. This feature also persists in the presence of small amounts of $sigma_x$ (bit flip) noise.