Do you want to publish a course? Click here

Longitudinally Resolved Spectral Retrieval (ReSpect) of WASP-43b

388   0   0.0 ( 0 )
 Added by Patricio Cubillos
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Thermal phase variations of short period planets indicate that they are not spherical cows: day-to-night temperature contrasts range from hundreds to thousands of degrees, rivaling their vertical temperature contrasts. Nonetheless, the emergent spectra of short-period planets have typically been fit using one-dimensional (1D) spectral retrieval codes that only account for vertical temperature gradients. The popularity of 1D spectral retrieval codes is easy to understand: they are robust and have a rich legacy in Solar System atmospheric studies. Exoplanet researchers have recently introduced multi-dimensional retrieval schemes for interpreting the spectra of short-period planets, but these codes are necessarily more complex and computationally expensive than their 1D counterparts. In this paper we present an alternative: phase-dependent spectral observations are inverted to produce longitudinally resolved spectra that can then be fitted using standard 1D spectral retrieval codes. We test this scheme on the iconic phase-resolved spectra of WASP-43b and on simulated JWST observations using the open-source pyratbay 1D spectral retrieval framework. Notably, we take the model complexity of the simulations one step further over previous studies by allowing for longitudinal variations in composition in addition to temperature. We show that performing 1D spectral retrieval on longitudinally resolved spectra is more accurate than applying 1D spectral retrieval codes to disk-integrated emission spectra, despite being identical in terms of computational load. We find that for the extant Hubble and Spitzer observations of WASP-43b the difference between the two approaches is negligible but that JWST phase measurements should be treated with longitudinally textbf{re}solved textbf{spect}ral retrieval (ReSpect).



rate research

Read More

We have conducted a re-analysis of publicly available Hubble Space Telescope Wide Field Camera 3 (HST WFC3) transmission data for the hot-Jupiter exoplanet WASP-43b, using the Bayesian retrieval package Tau-REx. We report evidence of AlO in transmission to a high level of statistical significance (> 5-sigma in comparison to a flat model, and 3.4-sigma in comparison to a model with H2O only). We find no evidence of the presence of CO, CO2, or CH4 based on the available HST WFC3 data or on Spitzer IRAC data. We demonstrate that AlO is the molecule that fits the data to the highest level of confidence out of all molecules for which high-temperature opacity data currently exists in the infrared region covered by the HST WFC3 instrument, and that the subsequent inclusion of Spitzer IRAC data points in our retrieval further supports the presence of AlO. H2O is the only other molecule we find to be statistically significant in this region. AlO is not expected from the equilibrium chemistry at the temperatures and pressures of the atmospheric layer that is being probed by the observed data. Its presence therefore implies direct evidence of some disequilibrium processes with links to atmospheric dynamics. Implications for future study using instruments such as the James Webb Space Telescope (JWST) are discussed, along with future opacity needs. Comparisons are made with previous studies into WASP-43b.
We present 15 new transit observations of the exoplanet WASP-43b in the $i$,$g$, and $R$ filters with the 1.0-m telescopes of Las Cumbres Observatory Global Telescope (LCOGT) Network and the IAC80 telescope. We combine our 15 new light curves with 52 others from literature, to analyze homogeneously all the available transit light curves of this exoplanet. By extending the time span of the monitoring of the transits to more than $5~yr$, and by analyzing the individual mid-times of 72 transits, we study the proposed shortening of the orbital period of WASP-43b. We estimate that the times of transit are well-matched by our updated ephemeris equation, using a constant orbital period. We estimate an orbital period change rate no larger than $dot{P}=-0.02 pm 6.6~ms~yr^{-1}$, which is fully consistent with a constant period. Based on the timing analysis, we discard stellar tidal dissipation factors $Q_{*}<10^{5}$. In addition, with the modelling of the transits we update the system parameters: $a/Rs=4.867(23)$, $i=82.11(10)^{circ}$ and $R_p/R_s=0.15942(41)$, noticing a difference in the relative size of the planet between optical and NIR bands.
153 - Ch. Helling , D. Lewis , D. Samra 2021
Ultra-hot Jupiters are the hottest exoplanets discovered so far. Observations begin to provide insight into the composition of their extended atmospheres and their chemical day/night asymmetries. Both are strongly affected by cloud formation. We explore trends in cloud properties for a sample of five giant gas planets: WASP-43b, WASP-18b, HAT-P-7b, WASP-103b, and WASP-121b. This provides a reference frame for cloud properties for the JWST targets WASP-43b and WASP-121b. We further explore chemically inert tracers to observe geometrical asymmetries, and if the location of inner boundary of a 3D GCM matters for the clouds that form. The large day/night temperature differences of ultra-hot Jupiters cause large chemical asymmetries: cloud-free days but cloudy nights, atomic vs. molecular gases and respectively different mean molecular weights, deep thermal ionospheres vs. low-ionised atmospheres, undepleted vs enhanced C/O. WASP-18b, as the heaviest planet in the sample, has the lowest global C/O. The global climate may be considered as similar amongst ultra-hot Jupiters, but different to that of hot gas giants. The local weather, however, is individual for each planet since the local thermodynamic conditions, and hence the local cloud and gas properties, differ. The morning and the evening terminator of ultra-hot Jupiters will carry signatures of their strong chemical asymmetry such that ingress/egress asymmetries can be expected. An increased C/O ratio is a clear sign of cloud formation, making cloud modelling a necessity when utilizing C/O (or other mineral ratios) as tracer for planet formation. The changing geometrical extension of the atmosphere from the day to the nightside may be probed through chemically inert species like helium. Ultra-hot Jupiters are likely to develop deep atmospheric ionospheres which may impact the atmosphere dynamics through MHD processes.
Three optical telescopes located at the San Pedro Martir National Observatory were used for the first time to obtain multi-filter defocused photometry of the transiting extrasolar planets WASP-39b and WASP-43b. We observed WASP-39b with the 2.12m telescope in the U filter for the first time, and additional observations were carried out in the R and I filters using the 0.84m telescope. WASP-43b was observed in VRI with the same instrument, and in the i filter with the robotic 1.50m telescope. We reduced the data using different pipelines and performed aperture photometry with the help of custom routines, in order to obtain the light curves. The fit of the light curves (1.5--2.5mmag rms), and of the period analysis, allowed a revision of the orbital and physical parameters, revealing for WASP-39b a period ($4.0552947 pm 9.65 times 10^{-7}$ days) which is $3.084 pm 0.774$ seconds larger than previously reported. Moreover, we find for WASP-43b a planet/star radius ($0.1738 pm 0.0033$) which is $0.01637 pm 0.00371$ larger in the i filter with respect to previous works, and that should be confirmed with additional observations. Finally, we confirm no evidence of constant period variations in WASP-43b.
This and companion papers by Harrington et al. 2021, submitted and Cubillos et al. 2021, submitted describe an open-source retrieval framework, Bayesian Atmospheric Radiative Transfer (BART), available to the community under the reproducible-research license via https://github.com/exosports/BART . BART is a radiative-transfer code (transit, https://github.com/exosports/transit , Rojo 2009, 2009ASPC..420..321R), initialized by the Thermochemical Equilibrium Abundances (TEA, https://github.com/dzesmin/TEA , Blecic et al. 2016, arXiv:1505.06392) code, and driven through the parameter phase space by a differential-evolution Markov-chain Monte Carlo (MC3, https://github.com/pcubillos/mc3 , Cubillos et al. 2017, arXiv:1610.01336) sampler. In this paper we give a brief description of the framework, and its modules that can be used separately for other scientific purposes; outline the retrieval analysis flow; present the initialization routines, describing in detail the atmospheric profile generator and the temperature and species parameterizations; and specify the post-processing routines and outputs, concentrating on the spectrum band integrator, the best-fit model selection, and the contribution functions. We also present an atmospheric analysis of WASP-43b secondary eclipse data obtained from space- and ground-based observations. We compare our results with the results from the literature, and investigate how the inclusion of additional opacity sources influence the best-fit model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا