Do you want to publish a course? Click here

The isotropic attractor solution of axion-SU(2) inflation: Universal isotropization in Bianchi type-I geometry

70   0   0.0 ( 0 )
 Added by Ira Wolfson
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

SU(2) gauge fields coupled to an axion field can acquire an isotropic background solution during inflation. We study homogeneous but anisotropic inflationary solutions in the presence of such (massless) gauge fields. A gauge field in the cosmological background may pose a threat to spatial isotropy. We show, however, that such models $textit{generally}$ isotropize in Bianchi type-I geometry, and the isotropic solution is the attractor. Restricting the setup by adding an axial symmetry, we revisited the numerical analysis presented in Wolfson et.al (2020). We find that the reported numerical breakdown in the previous analysis is an artifact of parametrization singularity. We use a new parametrization that is well-defined all over the phase space. We show that the system respects the cosmic no-hair conjecture and the anisotropies always dilute away within a few e-folds.



rate research

Read More

A powerful result in theoretical cosmology states that a subset of anisotropic Bianchi models can be seen as the homogeneous limit of (standard) linear cosmological perturbations. Such models are precisely those leading to Friedmann spacetimes in the limit of zero anisotropy. Building on previous works, we give a comprehensive exposition of this result, and perform the detailed identification between anisotropic degrees of freedom and their corresponding scalar, vector, and tensor perturbations of standard perturbation theory. In particular, we find that anisotropic models very close to open (i.e., negatively curved) Friedmann spaces correspond to some type of super-curvature perturbations. As a consequence, provided anisotropy is mild, its effects on all types of cosmological observables can always be computed as simple extensions of the standard techniques used in relativistic perturbation theory around Friedmann models. This fact opens the possibility to consistently constrain, for all cosmological observables, the presence of large scale anisotropies on the top of the stochastic fluctuations.
In this paper we investigate the cosmological dynamics of geometric inflation by means of the tools of the dynamical systems theory. We focus in the study of two explicit models where it is possible to sum the infinite series of higher curvature corrections that arises in the formalism. These would be very interesting possibilities since, if regard gravity as a quantum effective theory, a key feature is that higher powers of the curvature invariants are involved at higher loops. Hence, naively, consideration of the whole infinite tower of curvature invariants amounts to consideration of all of the higher order loops. The global dynamics of these toy models in the phase space is discussed and the quantum origin of primordial inflation is exposed.
In this paper, we study a Bianchi type -I model of universe filled with barotropic and dark energy(DE) type fluids. The present values of cosmological parameters such as Hubble constant $H_0$, barotropic, DE and anisotropy energy parameters $(Omega_{m})_0$, $(Omega_{de})_0$ and $(Omega_{sigma})_0 $ and Equation of State(EoS) parameter for DE ($omega_{de}$) are statistically estimated in two ways by taking 38 point data set of Hubble parameter H(z) and 581 point data set of distance modulus of supernovae in the range $0leq z leq 1.414$. It is found that the results agree with the Planck result [P.A.R. Ade, et al., Astron. Astrophys. 594 A14 (2016)] and more latest result obtained by Amirhashchi and Amirhashchi [H. Amirhashchi and S. Amirhashchi, arXiv:1811.05400v4 (2019)]. Various physical properties such as age of the universe, deceleration parameter etc have also been investigated.
Weyl (scale) invariant theories of scalars and gravity can generate all mass scales spontaneously. In this paper we study a particularly simple version -- scale invariant $R^2$ gravity -- and show that, during an inflationary period, it leads to fluctuations which, for a particular parameter choice, are almost indistinguishable from normal $R^2$ inflation. Current observations place tight constraints on the primary coupling constant of this theory and predict a tensor to scalar ratio, $0.0033 > r > 0.0026$, which is testable with the next generation of cosmic microwave background experiments.
Assuming that a scalar field controls the inflationary era, we examine the combined effects of string and $f(R)$ gravity corrections on the inflationary dynamics of canonical scalar field inflation, imposing the constraint that the speed of the primordial gravitational waves is equal to that of lights. Particularly, we study the inflationary dynamics of an Einstein-Gauss-Bonnet gravity in the presence of $alpha R^2$ corrections, where $alpha$ is a free coupling parameter. As it was the case in the pure Einstein-Gauss-Bonnet gravity, the realization that the gravitational waves propagate through spacetime with the velocity of light, imposes the constraint that the Gauss-Bonnet coupling function $xi(phi)$ obeys the differential equation $ddotxi=Hdotxi$, where $H$ is the Hubble rate. Subsequently, a relation for the time derivative of the scalar field is extracted which implies that the scalar functions of the model, which are the Gauss-Bonnet coupling and the scalar potential, are interconnected and simply designating one of them specifies the other immediately. In this framework, it is useful to freely designate $xi(phi)$ and extract the corresponding scalar potential from the equations of motion but the opposite is still feasible. We demonstrate that the model can produce a viable inflationary phenomenology and for a wide range of the free parameters. Also, a mentionable issue is that when the coupling parameter $alpha$ of the $R^2$ correction term is $alpha<10^{-3}$ in Planck Units, the $R^2$ term is practically negligible and one obtains the same equations of motion as in the pure Einstein-Gauss-Bonnet theory, however the dynamics still change, since now the time derivative of $frac{partial f}{partial R}$ is nonzero.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا