Do you want to publish a course? Click here

Bohms quantum non-mechanics: An alternative quantum theory with its own ontology?

94   0   0.0 ( 0 )
 Added by Angel S. Sanz
 Publication date 2021
  fields Physics
and research's language is English
 Authors A. S. Sanz




Ask ChatGPT about the research

The ontological aspect of Bohmian mechanics, as a hidden-variable theory that provides us with an objective description of a quantum world without observers, is widely known. Yet its practicality is getting more and more acceptance and relevance, for it has proven to be an efficient and useful resource to tackle, explore, describe and explain such phenomena. This practical aspect emerges precisely when the pragmatic application of the formalism prevails over any other interpretational question, still a matter of debate and controversy. In this regard, the purpose here is to show and discuss how Bohmian mechanics emphasizes in a natural manner a series of dynamical features difficult to find out through other quantum approaches. This arises from the fact that Bohmian mechanics allows us to establish a direct link between the dynamics exhibited by quantum systems and the local variations of the quantum phase associated with their state. To illustrate these facts, simple models of two physically insightful quantum phenomena have been chosen, namely, the dispersion of a free Gaussian wave packet and Young-type two-slit interference. As it is shown, the outcomes from their analysis render a novel, alternative understanding of the dynamics displayed by these quantum phenomena in terms of the underlying local velocity field that connects the probability density with the quantum flux. This field, nothing but the so-called guidance condition in standard Bohmian mechanics, thus acquires a prominent role to understand quantum dynamics, as the mechanism responsible for such dynamics. This goes beyond the passive role typically assigned to this field in Bohmian mechanics, where traditionally trajectories and quantum potentials have received more attention instead.



rate research

Read More

We discuss an article by Steven Weinberg expressing his discontent with the usual ways to understand quantum mechanics. We examine the two solutions that he considers and criticizes and propose another one, which he does not discuss, the pilot wave theory or Bohmian mechanics, for which his criticisms do not apply.
101 - R. Muci~no , E. Okon , D. Sudarsky 2021
Relational Quantum Mechanics (RQM) is a non-standard interpretation of quantum theory based on the idea of abolishing the notion of absolute states of systems, in favor of states of systems relative to other systems. Such a move is claimed to solve the conceptual problems of standard quantum mechanics. Moreover, RQM has been argued to account for all quantum correlations without invoking non-local effects and, in spite of embracing a fully relational stance, to successfully explain how different observers exchange information. In this work, we carry out a thorough assessment of RQM and its purported achievements. We find that it fails to address the conceptual problems of standard quantum mechanics, and that it leads to serious conceptual problems of its own. We also uncover as unwarranted the claims that RQM can correctly explain information exchange among observers, and that it accommodates all quantum correlations without invoking non-local influences. We conclude that RQM is unsuccessful in its attempt to provide a satisfactory understanding of the quantum world.
104 - Huw Price , Ken Wharton 2015
Quantum weirdness has been in the news recently, thanks to an ingenious new experiment by a team led by Roland Hanson, at the Delft University of Technology. Much of the coverage presents the experiment as good (even conclusive) news for spooky action-at-a-distance, and bad news for local realism. We point out that this interpretation ignores an alternative, namely that the quantum world is retrocausal. We conjecture that this loophole is missed because it is confused for superdeterminism on one side, or action-at-a-distance itself on the other. We explain why it is different from these options, and why it has clear advantages, in both cases.
84 - M. Trassinelli 2018
We present a derivation of the third postulate of Relational Quantum Mechanics (RQM) from the properties of conditional probabilities.The first two RQM postulates are based on the information that can be extracted from interaction of different systems, and the third postulate defines the properties of the probability function. Here we demonstrate that from a rigorous definition of the conditional probability for the possible outcomes of different measurements, the third postulate is unnecessary and the Borns rule naturally emerges from the first two postulates by applying the Gleasons theorem. We demonstrate in addition that the probability function is uniquely defined for classical and quantum phenomena. The presence or not of interference terms is demonstrated to be related to the precise formulation of the conditional probability where distributive property on its arguments cannot be taken for granted. In the particular case of Youngs slits experiment, the two possible argument formulations correspond to the possibility or not to determine the particle passage through a particular path.
We characterize the quasianti-Hermitian quaternionic operators in QQM by means of their spectra; moreover, we state a necessary and sufficient condition for a set of quasianti-Hermitian quaternionic operators to be anti-Hermitian with respect to a uniquely defined positive scalar product in a infinite dimensional (right) quaternionic Hilbert space. According to such results we obtain two alternative descriptions of a quantum optical physical system, in the realm of quaternionic quantum mechanics, while no alternative can exist in complex quantum mechanics, and we discuss some differences between them.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا