Do you want to publish a course? Click here

Automated Dynamic Mechanism Design

90   0   0.0 ( 0 )
 Added by Hanrui Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We study Bayesian automated mechanism design in unstructured dynamic environments, where a principal repeatedly interacts with an agent, and takes actions based on the strategic agents report of the current state of the world. Both the principal and the agent can have arbitrary and potentially different valuations for the actions taken, possibly also depending on the actual state of the world. Moreover, at any time, the state of the world may evolve arbitrarily depending on the action taken by the principal. The goal is to compute an optimal mechanism which maximizes the principals utility in the face of the self-interested strategic agent. We give an efficient algorithm for computing optimal mechanisms, with or without payments, under different individual-rationality constraints, when the time horizon is constant. Our algorithm is based on a sophisticated linear program formulation, which can be customized in various ways to accommodate richer constraints. For environments with large time horizons, we show that the principals optimal utility is hard to approximate within a certain constant factor, complementing our algorithmic result. We further consider a special case of the problem where the agent is myopic, and give a refined efficient algorithm whose time complexity scales linearly in the time horizon. Moreover, we show that memoryless mechanisms do not provide a good solution for our problem, in terms of both optimality and computational tractability. These results paint a relatively complete picture for automated dynamic mechanism design in unstructured environments. Finally, we present experimental results where our algorithms are applied to synthetic dynamic environments with different characteristics, which not only serve as a proof of concept for our algorithms, but also exhibit intriguing phenomena in dynamic mechanism design.



rate research

Read More

We study the problem of automated mechanism design with partial verification, where each type can (mis)report only a restricted set of types (rather than any other type), induced by the principals limited verification power. We prove hardness results when the revelation principle does not necessarily hold, as well as when types have even minimally different preferences. In light of these hardness results, we focus on truthful mechanisms in the setting where all types share the same preference over outcomes, which is motivated by applications in, e.g., strategic classification. We present a number of algorithmic and structural results, including an efficient algorithm for finding optimal deterministic truthful mechanisms, which also implies a faster algorithm for finding optimal randomized truthful mechanisms via a characterization based on convexity. We then consider a more general setting, where the principals cost is a function of the combination of outcomes assigned to each type. In particular, we focus on the case where the cost function is submodular, and give generalizations of essentially all our results in the classical setting where the cost function is additive. Our results provide a relatively complete picture for automated mechanism design with partial verification.
The Competition Complexity of an auction measures how much competition is needed for the revenue of a simple auction to surpass the optimal revenue. A classic result from auction theory by Bulow and Klemperer [9], states that the Competition Complexity of VCG, in the case of n i.i.d. buyers and a single item, is 1, i.e., it is better to recruit one extra buyer and run a second price auction than to learn exactly the buyers underlying distribution and run the revenue-maximizing auction tailored to this distribution. In this paper we study the Competition Complexity of dynamic auctions. Consider the following setting: a monopolist is auctioning off m items in m consecutive stages to n interested buyers. A buyer realizes her value for item k in the beginning of stage k. We prove that the Competition Complexity of dynamic auctions is at most 3n, and at least linear in n, even when the buyers values are correlated across stages, under a monotone hazard rate assumption on the stage (marginal) distributions. We also prove results on the number of additional buyers necessary for VCG at every stage to be an {alpha}-approximation of the optimal revenue; we term this number the {alpha}-approximate Competition Complexity. As a corollary we provide the first results on prior-independent dynamic auctions. This is, to the best of our knowledge, the first non-trivial positive guarantees for simple ex-post IR dynamic auctions for correlated stages. A key step towards proving bounds on the Competition Complexity is getting a good benchmark/upper bound to the optimal revenue. To this end, we extend the recent duality framework of Cai et al. [12] to dynamic settings. As an aside to our approach we obtain a revenue non-monotonicity lemma for dynamic auctions, which may be of independent interest.
We study the problem of repeatedly auctioning off an item to one of $k$ bidders where: a) bidders have a per-round individual rationality constraint, b) bidders may leave the mechanism at any point, and c) the bidders valuations are adversarially chosen (the prior-free setting). Without these constraints, the auctioneer can run a second-price auction to sell the business and receive the second highest total value for the entire stream of items. We show that under these constraints, the auctioneer can attain a constant fraction of the sell the business benchmark, but no more than $2/e$ of this benchmark. In the course of doing so, we design mechanisms for a single bidder problem of independent interest: how should you repeatedly sell an item to a (per-round IR) buyer with adversarial valuations if you know their total value over all rounds is $V$ but not how their value changes over time? We demonstrate a mechanism that achieves revenue $V/e$ and show that this is tight.
In this study, we apply reinforcement learning techniques and propose what we call reinforcement mechanism design to tackle the dynamic pricing problem in sponsored search auctions. In contrast to previous game-theoretical approaches that heavily rely on rationality and common knowledge among the bidders, we take a data-driven approach, and try to learn, over repeated interactions, the set of optimal reserve prices. We implement our approach within the current sponsored search framework of a major search engine: we first train a buyer behavior model, via a real bidding data set, that accurately predicts bids given information that bidders are aware of, including the game parameters disclosed by the search engine, as well as the bidders KPI data from previous rounds. We then put forward a reinforcement/MDP (Markov Decision Process) based algorithm that optimizes reserve prices over time, in a GSP-like auction. Our simulations demonstrate that our framework outperforms static optimization strategies including the ones that are currently in use, as well as several other dynamic ones.
Game theory is often used as a tool to analyze decentralized systems and their properties, in particular, blockchains. In this note, we take the opposite view. We argue that blockchains can and should be used to implement economic mechanisms because they can help to overcome problems that occur if trust in the mechanism designer cannot be assumed. Mechanism design deals with the allocation of resources to agents, often by extracting private information from them. Some mechanisms are immune to early information disclosure, while others may heavily depend on it. Some mechanisms have to randomize to achieve fairness and efficiency. Both issues, information disclosure, and randomness require trust in the mechanism designer. If there is no trust, mechanisms can be manipulated. We claim that mechanisms that use randomness or sequential information disclosure are much harder, if not impossible, to audit. Therefore, centralized implementation is often not a good solution. We consider some of the most frequently used mechanisms in practice and identify circumstances under which manipulation is possible. We propose a decentralized implementation of such mechanisms, that can be, in practical terms, realized by blockchain technology. Moreover, we argue in which environments a decentralized implementation of a mechanism brings a significant advantage.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا