No Arabic abstract
The June 2, 2018, impact of asteroid 2018 LA over Botswana is only the second asteroid detected in space prior to impacting over land. Here, we report on the successful recovery of meteorites. Additional astrometric data refine the approach orbit and define the spin period and shape of the asteroid. Video observations of the fireball constrain the asteroids position in its orbit and were used to triangulate the location of the fireballs main flare over the Central Kalahari Game Reserve. 23 meteorites were recovered. A consortium study of eight of these classifies Motopi Pan as a HED polymict breccia derived from howardite, cumulate and basaltic eucrite, and diogenite lithologies. Before impact, 2018 LA was a solid rock of about 156 cm diameter with high bulk density about 2.85 g/cm3, a relatively low albedo pV about 0.25, no significant opposition effect on the asteroid brightness, and an impact kinetic energy of about 0.2 kt. The orbit of 2018 LA is consistent with an origin at Vesta (or its Vestoids) and delivery into an Earth-impacting orbit via the nu_6 resonance. The impact that ejected 2018 LA in an orbit towards Earth occurred 22.8 +/- 3.8 Ma ago. Zircons record a concordant U-Pb age of 4563 +/- 11 Ma and a consistent 207Pb/206Pb age of 4563 +/- 6 Ma. A much younger Pb-Pb phosphate resetting age of 4234 +/- 41 Ma was found. From this impact chronology, we discuss what is the possible source crater of Motopi Pan and the age of Vestas Veneneia impact basin.
Small near-Earth asteroids (>20 meters) are interesting because they are progenitors for meteorites in our terrestrial collection. Crucial to our understanding of the effectiveness of our atmosphere in filtering low-strength impactors is the physical characteristics of these small near-Earth asteroids (NEAs). In the past, characterization of small NEAs has been a challenge because of the difficulty in detecting them prior to close Earth flyby. In this study we physically characterized the 2-meter diameter near-Earth asteroid 2015 TC25 using ground-based optical, near-infrared and radar assets during a close flyby of the Earth (distance 69,000 miles) in Oct. 2015. Our observations suggest that its surface composition is similar to aubrites, a rare class of high albedo differentiated meteorites. Aubrites make up only 0.14 % of all know meteorites in our terrestrial meteorite collection. 2015 TC25 is also a very fast rotator with a rotation period of 133 seconds. We compared spectral and dynamical properties of 2015 TC25 and found the best candidate source body in the inner main belt to be the 70-km diameter E-type asteroid (44) Nysa. We attribute difference in spectral slope between the two objects to the lack of regolith on the surface of 2015 TC25. Using the albedo of E-type asteroids (50-60%) we refine the diameter of 2015 TC25 to 2-meters making it one of the smallest NEA ever to be characterized.
The asteroid belt was dynamically shaped during and after planet formation. Despite representing a broad ring of stable orbits, the belt contains less than one one-thousandth of an Earth mass. The asteroid orbits are dynamically excited with a wide range in eccentricity and inclination and their compositions are diverse, with a general trend toward dry objects in the inner belt and more water-rich objects in the outer belt. Here we review models of the asteroid belts origins and dynamical history. The classical view is that the belt was born with several Earth masses in planetesimals, then strongly depleted. However, it is possible that very few planetesimals ever formed in the asteroid region and that the belts story is one of implantation rather than depletion. A number of processes may have implanted asteroids from different regions of the Solar System, dynamically removed them, and excited their orbits. During the gaseous disk phase these include the effects of giant planet growth and migration and sweeping secular resonances. After the gaseous disk phase these include scattering from resident planetary embryos, chaos in the giant planets orbits, the giant planet instability, and long-term dynamical evolution. Different global models for Solar System formation imply contrasting dynamical histories of the asteroid belt. Vesta and Ceres may have been implanted from opposite regions of the Solar System -- Ceres from the Jupiter-Saturn region and Vesta from the terrestrial planet region -- and could therefore represent very different formation conditions.
Orbit-determination programs find the orbit solution that best fits a set of observations by minimizing the RMS of the residuals of the fit. For near-Earth asteroids, the uncertainty of the orbit solution may be compatible with trajectories that impact Earth. This paper shows how incorporating the impact condition as an observation in the orbit-determination process results in a robust technique for finding the regions in parameter space leading to impacts. The impact pseudo-observation residuals are the b-plane coordinates at the time of close approach and the uncertainty is set to a fraction of the Earth radius. The extended orbit-determination filter converges naturally to an impacting solution if allowed by the observations. The uncertainty of the resulting orbit provides an excellent geometric representation of the virtual impactor. As a result, the impact probability can be efficiently estimated by exploring this region in parameter space using importance sampling. The proposed technique can systematically handle a large number of estimated parameters, account for nongravitational forces, deal with nonlinearities, and correct for non-Gaussian initial uncertainty distributions. The algorithm has been implemented into a new impact monitoring system at JPL called Sentry-II, which is undergoing extensive testing. The main advantages of Sentry-II over JPLs currently operating impact monitoring system Sentry are that Sentry-II can systematically process orbits perturbed by nongravitational forces and that it is generally more robust when dealing with pathological cases. The runtimes and completeness of both systems are comparable, with the impact probability of Sentry-II for 99% completeness being $3times10^{-7}$.
NASA has developed a Figure of Merit method to grade the fidelity of lunar simulants for scientific and engineering purposes. Here we extend the method to grade asteroid simulants, both regolith and cobble variety, and we apply the method to the newly developed asteroid regolith and cobble simulant UCF/DSI-CI-2. The reference material that is used to evaluate this simulant for most asteroid properties is the Orgueil meteorite. Those properties are the mineralogical and elemental composition, grain density, bulk density of cobbles, magnetic susceptibility, mechanical strength of cobbles, and volatile release patterns. To evaluate the regolith simulants particle sizing we use a reference model that was based upon the sample returned from Itokawa by Hayabusa, the boulder count on Hayabusa, and four cases of disrupted asteroids that indicate particle sizing of the subsurface material. Compared to these references, the simulant has high figures of merit, indicating it is a good choice for a wide range of scientific and engineering applications. We recommend this methodology to the wider asteroid community and in the near future will apply it to additional asteroid simulants currently under development.
Photometric observations of asteroid (596) Scheila were obtained during and after its 2010 outburst. The estimated radius of the body (spherical approximation of the asteroidal body) was 51.2 km and 50.67 km for different methods. The ejected dust mass from the asteroid ranged from 2.5*10e7 to 3.4*10^7 kg for different methods. An impact mechanism for triggering Scheilas activity is discussed. A few days before the impact, Scheila passed through the corridors of two potential cometary streams.