No Arabic abstract
We present measurements of the radial profiles of the mass and galaxy number density around Sunyaev-Zeldovich-selected clusters using both weak lensing and galaxy counts. The clusters are selected from the Atacama Cosmology Telescope Data Release 5 and the galaxies from the Dark Energy Survey Year 3 dataset. With signal-to-noise of 62 (43) for galaxy (weak lensing) profiles over scales of about $0.2-20h^{-1}$ Mpc, these are the highest precision measurements for SZ-selected clusters to date. Because SZ selection closely approximates mass selection, these measurements enable several tests of theoretical models of the mass and light distribution around clusters. Our main findings are: 1. The splashback feature is detected at a consistent location in both the mass and galaxy profiles and its location is consistent with predictions of cold dark matter N-body simulations. 2. The full mass profile is also consistent with the simulations; hence it can constrain alternative dark matter models that modify the mass distribution of clusters. 3. The shapes of the galaxy and lensing profiles are remarkably similar for our sample over the entire range of scales, from well inside the cluster halo to the quasilinear regime. This can be used to constrain processes such as quenching and tidal disruption that alter the galaxy distribution inside the halo, and scale-dependent features in the transition regime outside the halo. We measure the dependence of the profile shapes on the galaxy sample, redshift and cluster mass. We extend the Diemer & Kravtsov model for the cluster profiles to the linear regime using perturbation theory and show that it provides a good match to the measured profiles. We also compare the measured profiles to predictions of the standard halo model and simulations that include hydrodynamics. Applications of these results to cluster mass estimation and cosmology are discussed.
We present a detection of the splashback feature around galaxy clusters selected using their Sunyaev-Zeldovich (SZ) signal. Recent measurements of the splashback feature around optically selected galaxy clusters have found that the splashback radius, $r_{rm sp}$, is smaller than predicted by N-body simulations. A possible explanation for this discrepancy is that $r_{rm sp}$ inferred from the observed radial distribution of galaxies is affected by selection effects related to the optical cluster-finding algorithms. We test this possibility by measuring the splashback feature in clusters selected via the SZ effect in data from the South Pole Telescope SZ survey and the Atacama Cosmology Telescope Polarimeter survey. The measurement is accomplished by correlating these clusters with galaxies detected in the Dark Energy Survey Year 3 data. The SZ observable used to select clusters in this analysis is expected to have a tighter correlation with halo mass and to be more immune to projection effects and aperture-induced biases than optically selected clusters. We find that the measured $r_{rm sp}$ for SZ-selected clusters is consistent with the expectations from simulations, although the small number of SZ-selected clusters makes a precise comparison difficult. In agreement with previous work, when using optically selected redMaPPer clusters, $r_{rm sp}$ is $sim$ $2sigma$ smaller than in the simulations. These results motivate detailed investigations of selection biases in optically selected cluster catalogs and exploration of the splashback feature around larger samples of SZ-selected clusters. Additionally, we investigate trends in the galaxy profile and splashback feature as a function of galaxy color, finding that blue galaxies have profiles close to a power law with no discernible splashback feature, which is consistent with them being on their first infall into the cluster.
Following on our previous study of an analytic parametric model to describe the baryonic and dark matter distributions in clusters of galaxies with spherical symmetry, we perform an SZ analysis of a set of simulated clusters and present their mass and pressure profiles. The simulated clusters span a wide range in mass, 2.0 x 10^14 Msun < M200 < 1.0 x 10^15Msun, and observations with the Arcminute Microkelvin Imager (AMI) are simulated through their Sunyaev- Zeldovich (SZ) effect. We assume that the dark matter density follows a Navarro, Frenk and White (NFW) profile and that the gas pressure is described by a generalised NFW (GNFW) profile. By numerically exploring the probability distributions of the cluster parameters given simulated interferometric SZ data in the context of Bayesian methods, we investigate the capability of this model and analysis technique to return the simulated clusters input quantities. We show that considering the mass and redshift dependency of the cluster halo concentration parameter is crucial in obtaining an unbiased cluster mass estimate and hence deriving the radial profiles of the enclosed total mass and the gas pressure out to r200.
Cluster mass profiles are tests of models of structure formation. Only two current observational methods of determining the mass profile, gravitational lensing and the caustic technique, are independent of the assumption of dynamical equilibrium. Both techniques enable determination of the extended mass profile at radii beyond the virial radius. For 19 clusters, we compare the mass profile based on the caustic technique with weak lensing measurements taken from the literature. This comparison offers a test of systematic issues in both techniques. Around the virial radius, the two methods of mass estimation agree to within about 30%, consistent with the expected errors in the individual techniques. At small radii, the caustic technique overestimates the mass as expected from numerical simulations. The ratio between the lensing profile and the caustic mass profile at these radii suggests that the weak lensing profiles are a good representation of the true mass profile. At radii larger than the virial radius, the lensing mass profile exceeds the caustic mass profile possibly as a result of contamination of the lensing profile by large-scale structures within the lensing kernel. We highlight the case of the closely neighboring clusters MS0906+11 and A750 to illustrate the potential seriousness of contamination of the the weak lensing signal by unrelated structures.
Gravitational lensing allows to quantify the angular distribution of the convergence field around clusters of galaxies to constrain their connectivity to the cosmic web. We describe in this paper the corresponding theory in Lagrangian space where analytical results can be obtained by identifying clusters to peaks in the initial field. We derive the three-point Gaussian statistics of a two-dimensional field and its first and second derivatives. The formalism allows us to study the statistics of the field in a shell around a central peak, in particular its multipolar decomposition. The peak condition is shown to significantly remove power from the dipolar contribution and to modify the monopole and quadrupole. As expected, higher order multipoles are not significantly modified by the constraint. Analytical predictions are successfully checked against measurements in Gaussian random fields. The effect of substructures and radial weighting is shown to be small and does not change the qualitative picture. The non-linear evolution is shown to induce a non-linear bias of all multipoles proportional to the cluster mass.We predict the Gaussian and weakly non-Gaussian statistics of multipolar moments of a two-dimensional field around a peak as a proxy for the azimuthal distribution of the convergence field around a cluster of galaxies. A quantitative estimate of this multipolar decomposition of the convergence field around clusters in numerical simulations of structure formation and in observations will be presented in two forthcoming papers.
In General Relativity (GR), the graviton is massless. However, a common feature in several theoretical alternatives of GR is a non-zero mass for the graviton. These theories can be described as massive gravity theories. Despite many theoretical complexities in these theories, on phenomenological grounds, the implications of massive gravity have been widely used to put bounds on graviton mass. One of the generic implications of giving a mass to the graviton is that the gravitational potential will follow a Yukawa-like fall off. We use this feature of massive gravity theories to probe the mass of graviton by using the largest gravitationally bound objects, namely galaxy clusters. In this work, we use the mass estimates of galaxy clusters measured at various cosmologically defined radial distances measured via weak lensing (WL) and Sunyaev-Zeldovich (SZ) effect. We also use the model independent values of Hubble parameter $H(z)$ smoothed by a non-parametric method, Gaussian process. Within $1sigma$ confidence region, we obtain the mass of graviton $m_g < 5.9 times 10^{-30}$ eV with the corresponding Compton length scale $lambda_g > 6.82$ Mpc from weak lensing and $m_g < 8.31 times 10^{-30}$ eV with $lambda_g > 5.012$ Mpc from SZ effect. This analysis improves the upper bound on graviton mass obtained earlier from galaxy clusters.