No Arabic abstract
In General Relativity (GR), the graviton is massless. However, a common feature in several theoretical alternatives of GR is a non-zero mass for the graviton. These theories can be described as massive gravity theories. Despite many theoretical complexities in these theories, on phenomenological grounds, the implications of massive gravity have been widely used to put bounds on graviton mass. One of the generic implications of giving a mass to the graviton is that the gravitational potential will follow a Yukawa-like fall off. We use this feature of massive gravity theories to probe the mass of graviton by using the largest gravitationally bound objects, namely galaxy clusters. In this work, we use the mass estimates of galaxy clusters measured at various cosmologically defined radial distances measured via weak lensing (WL) and Sunyaev-Zeldovich (SZ) effect. We also use the model independent values of Hubble parameter $H(z)$ smoothed by a non-parametric method, Gaussian process. Within $1sigma$ confidence region, we obtain the mass of graviton $m_g < 5.9 times 10^{-30}$ eV with the corresponding Compton length scale $lambda_g > 6.82$ Mpc from weak lensing and $m_g < 8.31 times 10^{-30}$ eV with $lambda_g > 5.012$ Mpc from SZ effect. This analysis improves the upper bound on graviton mass obtained earlier from galaxy clusters.
The use of galaxy clusters as precision cosmological probes relies on an accurate determination of their masses. However, inferring the relationship between cluster mass and observables from direct observations is difficult and prone to sample selection biases. In this work, we use weak lensing as the best possible proxy for cluster mass to calibrate the Sunyaev-Zeldovich (SZ) effect measurements from the APEX-SZ experiment. For a well-defined (ROSAT) X-ray complete cluster sample, we calibrate the integrated Comptonization parameter, $Y_{rm SZ}$, to the weak-lensing derived total cluster mass, $M_{500}$. We employ a novel Bayesian approach to account for the selection effects by jointly fitting both the SZ Comptonization, $Y_{rm SZ}text{--}M_{500}$, and the X-ray luminosity, $L_{rm x}text{--}M_{500}$, scaling relations. We also account for a possible correlation between the intrinsic (log-normal) scatter of $L_{rm x}$ and $Y_{rm SZ}$ at fixed mass. We find the corresponding correlation coefficient to be $r= 0.47_{-0.35}^{+0.24}$, and at the current precision level our constraints on the scaling relations are consistent with previous works. For our APEX-SZ sample, we find that ignoring the covariance between the SZ and X-ray observables biases the normalization of the $Y_{rm SZ}text{--}M_{500}$ scaling high by $1text{--}2sigma$ and the slope low by $sim 1sigma$, even when the SZ effect plays no role in the sample selection. We conclude that for higher-precision data and larger cluster samples, as anticipated from on-going and near-future cluster cosmology experiments, similar biases (due to intrinsic covariances of cluster observables) in the scaling relations will dominate the cosmological error budget if not accounted for correctly.
We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19<z<0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wide-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ~25 in the radial range of 200 to 3500kpc/h. The stacked tangential-shear signal is well described by a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely the Navarro-Frenk-White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of $c_{200c}=4.01^{+0.35}_{-0.32}$ at $M_{200c}=1.34^{+0.10}_{-0.09} 10^{15}M_{odot}$. We show this is in excellent agreement with Lambda cold-dark-matter (LCDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is $alpha_E=0.191^{+0.071}_{-0.068}$, which is consistent with the NFW-equivalent Einasto parameter of $sim 0.18$. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data, and measure cluster masses at several characteristic radii. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions including the effects of surrounding large-scale structure as a two-halo term, establishing further consistency in the context of the LCDM model.
We present the mass calibration for galaxy clusters detected with the AMICO code in KiDS DR3 data. The cluster sample comprises $sim$ 7000 objects and covers the redshift range 0.1 < $z$ < 0.6. We perform a weak lensing stacked analysis by binning the clusters according to redshift and two different mass proxies provided by AMICO, namely the amplitude $A$ (measure of galaxy abundance through an optimal filter) and the richness $lambda^*$ (sum of membership probabilities in a consistent radial and magnitude range across redshift). For each bin, we model the data as a truncated NFW profile plus a 2-halo term, taking into account uncertainties related to concentration and miscentring. From the retrieved estimates of the mean halo masses, we construct the $A$-$M_{200}$ and the $lambda^*$-$M_{200}$ relations. The relations extend over more than one order of magnitude in mass, down to $M_{200} sim 2 (5) times 10^{13} M_odot/h$ at $z$ = 0.2 (0.5), with small evolution in redshift. The logarithmic slope is $sim 2.0$ for the $A$-mass relation, and $sim 1.7$ for the $lambda^*$-mass relation, consistent with previous estimations on mock catalogues and coherent with the different nature of the two observables.
In light of the tension in cosmological constraints reported by the Planck team between their SZ-selected cluster counts and Cosmic Microwave Background (CMB) temperature anisotropies, we compare the Planck cluster mass estimates with robust, weak-lensing mass measurements from the Weighing the Giants (WtG) project. For the 22 clusters in common between the Planck cosmology sample and WtG, we find an overall mass ratio of $left< M_{Planck}/M_{rm WtG} right> = 0.688 pm 0.072$. Extending the sample to clusters not used in the Planck cosmology analysis yields a consistent value of $left< M_{Planck}/M_{rm WtG} right> = 0.698 pm 0.062$ from 38 clusters in common. Identifying the weak-lensing masses as proxies for the true cluster mass (on average), these ratios are $sim 1.6sigma$ lower than the default mass bias of 0.8 assumed in the Planck cluster analysis. Adopting the WtG weak-lensing-based mass calibration would substantially reduce the tension found between the Planck cluster count cosmology results and those from CMB temperature anisotropies, thereby dispensing of the need for new physics such as uncomfortably large neutrino masses (in the context of the measured Planck temperature anisotropies and other data). We also find modest evidence (at 95 per cent confidence) for a mass dependence of the calibration ratio and discuss its potential origin in light of systematic uncertainties in the temperature calibration of the X-ray measurements used to calibrate the Planck cluster masses. Our results exemplify the critical role that robust absolute mass calibration plays in cluster cosmology, and the invaluable role of accurate weak-lensing mass measurements in this regard.
We introduce a novel method for reconstructing the projected matter distributions of galaxy clusters with weak-lensing (WL) data based on convolutional neural network (CNN). Training datasets are generated with ray-tracing through cosmological simulations. We control the noise level of the galaxy shear catalog such that it mimics the typical properties of the existing ground-based WL observations of galaxy clusters. We find that the mass reconstruction by our multi-layered CNN with the architecture of alternating convolution and trans-convolution filters significantly outperforms the traditional reconstruction methods. The CNN method provides better pixel-to-pixel correlations with the truth, restores more accurate positions of the mass peaks, and more efficiently suppresses artifacts near the field edges. In addition, the CNN mass reconstruction lifts the mass-sheet degeneracy when applied to sufficiently large fields. This implies that this CNN algorithm can be used to measure cluster masses in a model independent way for future wide-field WL surveys.