No Arabic abstract
Based on our recent work on the discretization of the radial AdS$_2$ geometry of extremal BH horizons,we present a toy model for the chaotic unitary evolution of infalling single particle wave packets. We construct explicitly the eigenstates and eigenvalues for the single particle dynamics for an observer falling into the BH horizon, with time evolution operator the quantum Arnold cat map (QACM). Using these results we investigate the validity of the eigenstate thermalization hypothesis (ETH), as well as that of the fast scrambling time bound (STB). We find that the QACM, while possessing a linear spectrum, has eigenstates, which are random and satisfy the assumptions of the ETH. We also find that the thermalization of infalling wave packets in this particular model is exponentially fast, thereby saturating the STB, under the constraint that the finite dimension of the single--particle Hilbert space takes values in the set of Fibonacci integers.
We consider deep inelastic scattering (DIS) on a large nucleus described as an extremal RN-AdS black hole using the holographic principle. Using the R-current correlators we determine the structure functions as a function Bjorken-x, and map it on a finite but large nucleus with fixed atomic number. The R-ratio of the nuclear structure functions exhibit strong shadowing at low-x.
I revisit the calculation of infinite-dimensional symmetries that emerge in the vicinity of isolated horizons. I focus the attention on extremal black holes, for which the isometry algebra that preserves a sensible set of asymptotic boundary conditions at the horizon strictly includes the BMS algebra. The conserved charges that correspond to this BMS sector, however, reduce to those of superrotation, generating only two copies of Witt algebra. For more general horizon isometries, in contrast, the charge algebra does include both Witt and supertranslations, being similar to BMS but s.str. differing from it. This work has been prepared for the proceedings of the XXII Simposio Sofichi 2020, held in Chile in November 2020. The material herein is based on my work in collaboration with Laura Donnay, Hernan Gonzalez and Miguel Pino, and it is included in arXiv:1511.08687 and arXiv:1607.05703.
We develop an effective theory which describes black holes with quantum mechanical horizons that is valid at scales long compared to the Schwarzschild radius but short compared to the lifetime of the black hole. Our formalism allows one to calculate the quantum mechanical effects in scattering processes involving black hole asymptotic states. We point out that the EFT Wightman functions which describe Hawking radiation in the Unruh vacuum are not Planck suppressed and are actually {it enhanced} relative to those in the Boulware vacuum, for which such radiation is absent. We elaborate on this point showing how the non-Planck suppressed effects of Hawking radiation cancel in classical observables.
We introduce a new approach to find the Tomita-Takesaki modular flow for multi-component regions in general chiral conformal field theory. Our method is based on locality and analyticity of primary fields as well as the so-called Kubo-Martin-Schwinger (KMS) condition. These features can be used to transform the problem to a Riemann-Hilbert problem on a covering of the complex plane cut along the regions, which is equivalent to an integral equation for the matrix elements of the modular Hamiltonian. Examples are considered.
We show that the Ocneanu algebra of quantum symmetries, for an ADE diagram (or for higher Coxeter-Dynkin systems, like the Di Francesco - Zuber system) is, in most cases, deduced from the structure of the modular T matrix in the A series. We recover in this way the (known) quantum symmetries of su(2) diagrams and illustrate our method by studying those associated with the three genuine exceptional diagrams of type su(3), namely E5, E9 and E21. This also provides the shortest way to the determination of twisted partition functions in boundary conformal field theory with defect lines.