Do you want to publish a course? Click here

Playing Codenames with Language Graphs and Word Embeddings

67   0   0.0 ( 0 )
 Added by Divya Koyyalagunta
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Although board games and video games have been studied for decades in artificial intelligence research, challenging word games remain relatively unexplored. Word games are not as constrained as games like chess or poker. Instead, word game strategy is defined by the players understanding of the way words relate to each other. The word game Codenames provides a unique opportunity to investigate common sense understanding of relationships between words, an important open challenge. We propose an algorithm that can generate Codenames clues from the language graph BabelNet or from any of several embedding methods - word2vec, GloVe, fastText or BERT. We introduce a new scoring function that measures the quality of clues, and we propose a weighting term called DETECT that incorporates dictionary-based word representations and document frequency to improve clue selection. We develop BabelNet-Word Selection Framework (BabelNet-WSF) to improve BabelNet clue quality and overcome the computational barriers that previously prevented leveraging language graphs for Codenames. Extensive experiments with human evaluators demonstrate that our proposed innovations yield state-of-the-art performance, with up to 102.8% improvement in precision@2 in some cases. Overall, this work advances the formal study of word games and approaches for common sense language understanding.



rate research

Read More

Word embeddings are usually derived from corpora containing text from many individuals, thus leading to general purpose representations rather than individually personalized representations. While personalized embeddings can be useful to improve language model performance and other language processing tasks, they can only be computed for people with a large amount of longitudinal data, which is not the case for new users. We propose a new form of personalized word embeddings that use demographic-specific word representations derived compositionally from full or partial demographic information for a user (i.e., gender, age, location, religion). We show that the resulting demographic-aware word representations outperform generic word representations on two tasks for English: language modeling and word associations. We further explore the trade-off between the number of available attributes and their relative effectiveness and discuss the ethical implications of using them.
Language representations are known to carry stereotypical biases and, as a result, lead to biased predictions in downstream tasks. While existing methods are effective at mitigating biases by linear projection, such methods are too aggressive: they not only remove bias, but also erase valuable information from word embeddings. We develop new measures for evaluating specific information retention that demonstrate the tradeoff between bias removal and information retention. To address this challenge, we propose OSCaR (Orthogonal Subspace Correction and Rectification), a bias-mitigating method that focuses on disentangling biased associations between concepts instead of removing concepts wholesale. Our experiments on gender biases show that OSCaR is a well-balanced approach that ensures that semantic information is retained in the embeddings and bias is also effectively mitigated.
139 - Bei Shi , Wai Lam , Shoaib Jameel 2017
Word embedding models such as Skip-gram learn a vector-space representation for each word, based on the local word collocation patterns that are observed in a text corpus. Latent topic models, on the other hand, take a more global view, looking at the word distributions across the corpus to assign a topic to each word occurrence. These two paradigms are complementary in how they represent the meaning of word occurrences. While some previous works have already looked at using word embeddings for improving the quality of latent topics, and conversely, at using latent topics for improving word embeddings, such two-step methods cannot capture the mutual interaction between the two paradigms. In this paper, we propose STE, a framework which can learn word embeddings and latent topics in a unified manner. STE naturally obtains topic-specific word embeddings, and thus addresses the issue of polysemy. At the same time, it also learns the term distributions of the topics, and the topic distributions of the documents. Our experimental results demonstrate that the STE model can indeed generate useful topic-specific word embeddings and coherent latent topics in an effective and efficient way.
Crosslingual word embeddings represent lexical items from different languages in the same vector space, enabling transfer of NLP tools. However, previous attempts had expensive resource requirements, difficulty incorporating monolingual data or were unable to handle polysemy. We address these drawbacks in our method which takes advantage of a high coverage dictionary in an EM style training algorithm over monolingual corpora in two languages. Our model achieves state-of-the-art performance on bilingual lexicon induction task exceeding models using large bilingual corpora, and competitive results on the monolingual word similarity and cross-lingual document classification task.
We propose a new approach for learning contextualised cross-lingual word embeddings based only on a small parallel corpus (e.g. a few hundred sentence pairs). Our method obtains word embeddings via an LSTM-based encoder-decoder model that performs bidirectional translation and reconstruction of the input sentence. Through sharing model parameters among different languages, our model jointly trains the word embeddings in a common multilingual space. We also propose a simple method to combine word and subword embeddings to make use of orthographic similarities across different languages. We base our experiments on real-world data from endangered languages, namely Yongning Na, Shipibo-Konibo and Griko. Our experiments on bilingual lexicon induction and word alignment tasks show that our model outperforms existing methods by a large margin for most language pairs. These results demonstrate that, contrary to common belief, an encoder-decoder translation model is beneficial for learning cross-lingual representations, even in extremely low-resource scenarios.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا