No Arabic abstract
The boundaries of quantum materials can host a variety of exotic effects such as topologically robust edge states or anyonic quasiparticles. Here, we show that fermionic systems such as graphene that admit a low energy Dirac description can exhibit counterintuitive relativistic effects at their boundaries. As an example, we consider carbon nanotubes and demonstrate that relativistic bulk spinor states can have non zero charge density on the boundaries, in contrast to the sinusoidal distribution of non-relativistic wave functions that are necessarily zero at the boundaries. This unusual property of relativistic spinors is complementary to the linear energy dispersion relation exhibited by Dirac materials and can influence their coupling to leads, transport properties or their response to external fields.
We consider the trial wavefunctions for the Fractional Quantum Hall Effect (FQHE) that are given by conformal blocks, and construct their associated edge excited states in full generality. The inner products between these edge states are computed in the thermodynamic limit, assuming generalized screening (i.e. short-range correlations only) inside the quantum Hall droplet, and using the language of boundary conformal field theory (boundary CFT). These inner products take universal values in this limit: they are equal to the corresponding inner products in the bulk 2d chiral CFT which underlies the trial wavefunction. This is a bulk/edge correspondence; it shows the equality between equal-time correlators along the edge and the correlators of the bulk CFT up to a Wick rotation. This approach is then used to analyze the entanglement spectrum (ES) of the ground state obtained with a bipartition AcupB in real-space. Starting from our universal result for inner products in the thermodynamic limit, we tackle corrections to scaling using standard field-theoretic and renormalization group arguments. We prove that generalized screening implies that the entanglement Hamiltonian H_E = - log {rho}_A is isospectral to an operator that is local along the cut between A and B. We also show that a similar analysis can be carried out for particle partition. We discuss the close analogy between the formalism of trial wavefunctions given by conformal blocks and Tensor Product States, for which results analogous to ours have appeared recently. Finally, the edge theory and entanglement spectrum of px + ipy paired superfluids are treated in a similar fashion in the appendix.
We provide evidence that, alongside topologically protected edge states, two-dimensional Chern insulators also support localised bulk states deep in their valance and conduction bands. These states manifest when local potential gradients are applied to the bulk, while all parts of the system remain adiabatically connected to the same phase. In turn, the bulk states produce bulk current transverse to the strain. This occurs even when the potential is always below the energy gap, where one expects only edge currents to appear. Bulk currents are topologically protected and behave like edge currents under external influence, such as temperature or local disorder. Detecting topologically resilient bulk currents offers a direct means to probe the localised bulk states.
Here we provide a general methodology to directly measure the topological currents emerging in the optical lattice implementation of the Haldane model. Alongside the edge currents supported by gapless edge states, transverse currents can emerge in the bulk of the system whenever the local potential is varied in space, even if it does not cause a phase transition. In optical lattice implementations the overall harmonic potential that traps the atoms provides the boundaries of the topological phase that supports the edge currents, as well as providing the potential gradient across the topological phase that gives rise to the bulk current. Both the edge and bulk currents are resilient to several experimental parameters such as trapping potential, temperature and disorder. We propose to investigate the properties of these currents directly from time-of-flight images with both short-time and long-time expansions.
We study fourfold rotation invariant gapped topological systems with time-reversal symmetry in two and three dimensions ($d=2,3$). We show that in both cases nontrivial topology is manifested by the presence of the $(d-2)$-dimensional edge states, existing at a point in 2D or along a line in 3D. For fermion systems without interaction, the bulk topological invariants are given in terms of the Wannier centers of filled bands, and can be readily calculated using a Fu-Kane-like formula when inversion symmetry is also present. The theory is extended to strongly interacting systems through explicit construction of microscopic models having robust $(d-2)$-dimensional edge states.
We study the heat transport along an edge state of a two-dimensional electron gas in the quantum Hall regime, in contact to two reservoirs at different temperatures. We consider two exactly solvable models for the edge state coupled to the reservoirs. The first one corresponds to filling $ u=1$ and tunneling coupling to the reservoirs. The second one corresponds to integer or fractional filling of the sequence $ u=1/m$ (with $m$ odd), and capacitive coupling to the reservoirs. In both cases we solve the problem by means of non-equilibrium Green function formalism. We show that heat propagates chirally along the edge in the two setups. We identify two temperature regimes, defined by $Delta$, the mean level spacing of the edge. At low temperatures, $T< Delta$, finite size effects play an important role in heat transport, for both types of contacts. The nature of the contacts manifest themselves in different power laws for the thermal conductance as a function of the temperature. For capacitive couplings a highly non-universal behavior takes place, through a prefactor that depends on the length of the edge as well as on the coupling strengths and the filling fraction. For larger temperatures, $T>Delta$, finite-size effects become irrelevant, but the heat transport strongly depends on the strength of the edge-reservoir interactions, in both cases. The thermal conductance for tunneling coupling grows linearly with $T$, whereas for the capacitive case it saturates to a value that depends on the coupling strengths and the filling factors of the edge and the contacts.