Do you want to publish a course? Click here

Reversify any sequential algorithm

56   0   0.0 ( 0 )
 Added by Yuri Gurevich
 Publication date 2021
and research's language is English
 Authors Yuri Gurevich




Ask ChatGPT about the research

To reversify an arbitrary sequential algorithm $A$, we gently instrument $A$ with bookkeeping machinery. The result is a step-for-step reversible algorithm that mimics $A$ step-for-step and stops exactly when $A$ does. Without loss of generality, we presume that algorithm $A$ is presented as an abstract state machine that is behaviorally identical to $A$. The existence of such representation has been proven theoretically, and the practicality of such representation has been amply demonstrated.



rate research

Read More

In a mean-payoff parity game, one of the two players aims both to achieve a qualitative parity objective and to minimize a quantitative long-term average of payoffs (aka. mean payoff). The game is zero-sum and hence the aim of the other player is to either foil the parity objective or to maximize the mean payoff. Our main technical result is a pseudo-quasi-polynomial algorithm for solving mean-payoff parity games. All algorithms for the problem that have been developed for over a decade have a pseudo-polynomial and an exponential factors in their running times; in the running time of our algorithm the latter is replaced with a quasi-polynomial one. By the results of Chatterjee and Doyen (2012) and of Schewe, Weinert, and Zimmermann (2018), our main technical result implies that there are pseudo-quasi-polynomial algorithms for solving parity energy games and for solving parity games with weights. Our main conceptual contributions are the definitions of strategy decompositions for both players, and a notion of progress measures for mean-payoff parity games that generalizes both parity and energy progress measures. The former provides normal forms for and succinct representations of winning strategies, and the latter enables the application to mean-payoff parity games of the order-theoretic machinery that underpins a recent quasi-polynomial algorithm for solving parity games.
Estimating the volume of a convex body is a central problem in convex geometry and can be viewed as a continuous version of counting. We present a quantum algorithm that estimates the volume of an $n$-dimensional convex body within multiplicative error $epsilon$ using $tilde{O}(n^{3}+n^{2.5}/epsilon)$ queries to a membership oracle and $tilde{O}(n^{5}+n^{4.5}/epsilon)$ additional arithmetic operations. For comparison, the best known classical algorithm uses $tilde{O}(n^{4}+n^{3}/epsilon^{2})$ queries and $tilde{O}(n^{6}+n^{5}/epsilon^{2})$ additional arithmetic operations. To the best of our knowledge, this is the first quantum speedup for volume estimation. Our algorithm is based on a refined framework for speeding up simulated annealing algorithms that might be of independent interest. This framework applies in the setting of Chebyshev cooling, where the solution is expressed as a telescoping product of ratios, each having bounded variance. We develop several novel techniques when implementing our framework, including a theory of continuous-space quantum walks with rigorous bounds on discretization error.
125 - Akira SaiToh 2014
We consider the problem of mapping digital data encoded on a quantum register to analog amplitudes in parallel. It is shown to be unlikely that a fully unitary polynomial-time quantum algorithm exists for this problem; NP becomes a subset of BQP if it exists. In the practical point of view, we propose a nonunitary linear-time algorithm using quantum decoherence. It tacitly uses an exponentially large physical resource, which is typically a huge number of identical molecules. Quantumness of correlation appearing in the process of the algorithm is also discussed.
We present a quantum algorithm for simulating the dynamics of Hamiltonians that are not necessarily sparse. Our algorithm is based on the input model where the entries of the Hamiltonian are stored in a data structure in a quantum random access memory (qRAM) which allows for the efficient preparation of states that encode the rows of the Hamiltonian. We use a linear combination of quantum walks to achieve poly-logarithmic dependence on precision. The time complexity of our algorithm, measured in terms of the circuit depth, is $O(tsqrt{N}|H|,mathrm{polylog}(N, t|H|, 1/epsilon))$, where $t$ is the evolution time, $N$ is the dimension of the system, and $epsilon$ is the error in the final state, which we call precision. Our algorithm can be directly applied as a subroutine for unitary implementation and quantum linear systems solvers, achieving $widetilde{O}(sqrt{N})$ dependence for both applications.
We give an approximation algorithm for MaxCut and provide guarantees on the average fraction of edges cut on $d$-regular graphs of girth $geq 2k$. For every $d geq 3$ and $k geq 4$, our approximation guarantees are better than those of all other classical and quantum algorithms known to the authors. Our algorithm constructs an explicit vector solution to the standard semidefinite relaxation of MaxCut and applies hyperplane rounding. It may be viewed as a simplification of the previously best known technique, which approximates Gaussian wave processes on the infinite $d$-regular tree.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا