Do you want to publish a course? Click here

Superconducting diode effect via conformal-mapped nanoholes

100   0   0.0 ( 0 )
 Added by Yong-Lei Wang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A superconducting diode is an electronic device that conducts supercurrent and exhibits zero resistance primarily for one direction of applied current. Such a dissipationless diode is a desirable unit for constructing electronic circuits with ultralow power consumption. However, realizing a superconducting diode is fundamentally and technologically challenging, as it usually requires a material structure without a centre of inversion, which is scarce among superconducting materials. Here, we demonstrate a superconducting diode achieved in a conventional superconducting film patterned with a conformal array of nanoscale holes, which breaks the spatial inversion symmetry. We showcase the superconducting diode effect through switchable and reversible rectification signals, which can be three orders of magnitude larger than that from a flux-quantum diode. The introduction of conformal potential landscapes for creating a superconducting diode is thereby proven as a convenient, tunable, yet vastly advantageous tool for superconducting electronics. This could be readily applicable to any superconducting materials, including cuprates and iron-based superconductors that have higher transition temperatures and are desirable in device applications.



rate research

Read More

372 - Akito Daido , Yuhei Ikeda , 2021
Stimulated by the recent experiment [F. Ando et al., Nature 584, 373 (2020)], we propose an intrinsic mechanism to cause the superconducting diode effect (SDE). SDE refers to the nonreciprocity of the critical current for the metal-superconductor transition. Among various mechanisms for the critical current, the depairing current is known to be intrinsic to each material and has recently been observed in several superconducting systems. We clarify the temperature scaling of the nonreciprocal depairing current near the critical temperature and point out its significant enhancement at low temperatures. It is also found that the nonreciprocal critical current shows sign reversals upon increasing the magnetic field. These behaviors are understood by the nonreciprocity of the Landau critical momentum and the crossover of the helical superconductivity. The intrinsic SDE unveils the rich phase diagram and functionalities of noncentrosymmetric superconductors.
How small superconductors can be? For isolated nanoparticles subject to quantum size effects, P.W. Anderson conjectured in 1959 that superconductivity could only exist when the electronic level spacing $delta$ is smaller than the superconducting gap energy $Delta$. Here, we report a scanning tunneling spectroscopy study of superconducting lead (Pb) nanocrystals grown on the (110) surface of InAs. We find that for nanocrystals of lateral size smaller than the Fermi wavelength of the 2D electron gas at the surface of InAs, the electronic transmission of the interface is weak; this leads to Coulomb blockade and enables the extraction of the electron addition energy of the nanocrystals. For large nanocrystals, the addition energy displays superconducting parity effect, a direct consequence of Cooper pairing. Studying this parity effect as function of nanocrystal volume, we find the suppression of Cooper pairing when the mean electronic level spacing overcomes the superconducting gap energy, thus demonstrating unambiguously the validity of the Anderson criterion.
102 - Jue Jiang , Weiwei Zhao , Fei Wang 2021
When a ferromagnet is placed in contact with a superconductor, owing to incompatible spin order, the Cooper pairs from the superconductor cannot survive more than one or two nanometers inside the ferromagnet. This is confirmed in the measurements of ferromagnetic nickel (Ni) nanowires contacted by superconducting niobium (Nb) leads. However, when a thin copper (Cu) buffer layer (3 nm, oxidized due to exposure to air) is inserted between the Nb electrodes and the Ni wire, the spatial extent of the superconducting proximity range is dramatically increased from 2 to a few tens of nanometers. Scanning transmission electron microscope images verify the existence of Cu oxides and the magnetization measurements of such a 3 nm oxidized Cu film on a SiO2/Si substrate and on Nb/SiO2/Si show evidence of ferromagnetism. One way to understand the long-range proximity effect in the Ni nanowire is that the oxidized Cu buffer layer with ferromagnetism facilitates the conversion of singlet superconductivity in Nb into triplet supercurrent along the Ni nanowires.
Exerting control of the magnetic exchange interaction in heterostructures is of both basic interest and has potential for use in spin-based applications relying on quantum effects. We here show that the sign of the exchange interaction in a spin-valve, determining whether the ferro- or antiferromagnetic configuration is favored, can be controlled via an electric voltage. This occurs due to an interplay between a nonequilibrium quasiparticle distribution and the presence of spin-polarized Cooper pairs. Additionally, we show that a voltage-induced distribution controls the anomalous supercurrent that occurs in magnetic Josephson junctions, obviating the challenging task to manipulate the magnetic texture of the system. This demonstrates that two key phenomena in superconducting spintronics, the magnetic exchange interaction and the phase shift generating the anomalous Josephson effect, can be controlled electrically. Our findings are of relevance for spin-based superconducting devices which in practice most likely have to be operated precisely by nonequilibrium effects.
In the last 60 years conventional solid and electrolyte gating allowed sizable modulations of the surface carrier concentration in metallic superconductors resulting in tuning their conductivity and changing their critical temperature. Recent conventional gating experiments on superconducting metal nano-structures showed full suppression of the critical current without variations of the normal state resistance and the critical temperature. These results still miss a microscopic explanation. In this article, we show a complete set of gating experiments on Ti-based superconducting Dayem bridges and a suggested classical thermodynamic model which seems to account for several of our experimental findings. In particular, zero-bias resistance and critical current IC measurements highlight the following: the suppression of IC with both polarities of gate voltage, the surface nature of the effect, the critical temperature independence from the electric field and the gate-induced growth of a sub-gap dissipative component. In addition, the temperature dependence of the Josephson critical current seems to show the transition from the ballistic Kulik-Omelyanchuck behavior to the Ambegaokar-Baratoff tunnel-like characteristic by increasing the electric field. Furthermore, the IC suppression persists in the presence of sizeable perpendicular-to-plane magnetic fields. We propose a classical thermodynamic model able to describe some of the experimental observations of the present and previous works. Above all, the model grabs the bipolar electric field induced suppression of IC and the emergence of a sub-gap dissipative component near full suppression of the supercurrent. Finally, applications employing the discussed effect are proposed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا