No Arabic abstract
The uncertainty of multiple power loads and re-newable energy generations in power systems increases the complexity of power flow analysis for decision-makers. The chance-constraint method can be applied to model the optimi-zation problems of power flow with uncertainty. This paper develops a novel solution approach for chance-constrained AC optimal power flow (CCACOPF) problem based on the da-ta-driven convexification of power flow and the fast algorithm for scenario technique (FAST). This method is computationally effective for mainly two reasons. First, the original nonconvex AC power flow constraints are approximated by a set of learn-ing-based quadratic convex ones. Second, FAST is a more ad-vanced distribution-free scenario-based solution method using far less scenarios than the conventional one, retaining a high confidence level. Eventually, the CCACOPF is converted into a computationally tractable convex optimization problem. The simulation results on IEEE test cases indicate that 1) the pro-posed solution method can excel the conventional one and ro-bust program in computational efficiency, 2) the data-driven convexification of power flow is effective in approximating original complex AC power flow.
For optimal power flow problems with chance constraints, a particularly effective method is based on a fixed point iteration applied to a sequence of deterministic power flow problems. However, a priori, the convergence of such an approach is not necessarily guaranteed. This article analyses the convergence conditions for this fixed point approach, and reports numerical experiments including for large IEEE networks.
Optimal power flow (OPF) is the fundamental mathematical model in power system operations. Improving the solution quality of OPF provide huge economic and engineering benefits. The convex reformulation of the original nonconvex alternating current OPF (ACOPF) model gives an efficient way to find the global optimal solution of ACOPF but suffers from the relaxation gaps. The existence of relaxation gaps hinders the practical application of convex OPF due to the AC-infeasibility problem. We evaluate and improve the tightness of the convex ACOPF model in this paper. Various power networks and nodal loads are considered in the evaluation. A unified evaluation framework is implemented in Julia programming language. This evaluation shows the sensitivity of the relaxation gap and helps to benchmark the proposed tightness reinforcement approach (TRA). The proposed TRA is based on the penalty function method which penalizes the power loss relaxation in the objective function of the convex ACOPF model. A heuristic penalty algorithm is proposed to find the proper penalty parameter of the TRA. Numerical results show relaxation gaps exist in test cases especially for large-scale power networks under low nodal power loads. TRA is effective to reduce the relaxation gap of the convex ACOPF model.
We propose a framework for integrating optimal power flow (OPF) with state estimation (SE) in the loop for distribution networks. Our approach combines a primal-dual gradient-based OPF solver with a SE feedback loop based on a limited set of sensors for system monitoring, instead of assuming exact knowledge of all states. The estimation algorithm reduces uncertainty on unmeasured grid states based on a few appropriate online state measurements and noisy pseudo-measurements. We analyze the convergence of the proposed algorithm and quantify the statistical estimation errors based on a weighted least squares (WLS) estimator. The numerical results on a 4521-node network demonstrate that this approach can scale to extremely large networks and provide robustness to both large pseudo measurement variability and inherent sensor measurement noise.
Move blocking (MB) is a widely used strategy to reduce the degrees of freedom of the Optimal Control Problem (OCP) arising in receding horizon control. The size of the OCP is reduced by forcing the input variables to be constant over multiple discretization steps. In this paper, we focus on developing computationally efficient MB schemes for multiple shooting based nonlinear model predictive control (NMPC). The degrees of freedom of the OCP is reduced by introducing MB in the shooting step, resulting in a smaller but sparse OCP. Therefore, the discretization accuracy and level of sparsity is maintained. A condensing algorithm that exploits the sparsity structure of the OCP is proposed, that allows to reduce the computation complexity of condensing from quadratic to linear in the number of discretization nodes. As a result, active-set methods with warm-start strategy can be efficiently employed, thus allowing the use of a longer prediction horizon. A detailed comparison between the proposed scheme and the nonuniform grid NMPC is given. Effectiveness of the algorithm in reducing computational burden while maintaining optimization accuracy and constraints fulfillment is shown by means of simulations with two different problems.
In this paper, we investigate a constrained optimal coordination problem for a class of heterogeneous nonlinear multi-agent systems described by high-order dynamics subject to both unknown nonlinearities and external disturbances. Each agent has a private objective function and a constraint about its output. A neural network-based distributed controller is developed for each agent such that all agent outputs can reach the constrained minimal point of the aggregate objective function with bounded residual errors. Two examples are finally given to demonstrate the effectiveness of the algorithm.