Do you want to publish a course? Click here

Asymptotic Analysis of q-Recursive Sequences

71   0   0.0 ( 0 )
 Added by Daniel Krenn
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

For an integer $qge2$, a $q$-recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of~$q$. In this article, $q$-recursive sequences are studied and the asymptotic behavior of their summatory functions is analyzed. It is shown that every $q$-recursive sequence is $q$-regular in the sense of Allouche and Shallit and that a $q$-linear representation of the sequence can be computed easily by using the coefficients from the recurrence relations. Detailed asymptotic results for $q$-recursive sequences are then obtained based on a general result on the asymptotic analysis of $q$-regular sequences. Three particular sequences are studied in detail: We discuss the asymptotic behavior of the summatory functions of Sterns diatomic sequence, the number of non-zero elements in some generalized Pascals triangle and the number of unbordered factors in the Thue--Morse sequence. For the first two sequences, our analysis even leads to precise formulae{} without error terms.



rate research

Read More

We study two types of dynamical extensions of Lucas sequences and give elliptic solutions for them. The first type concerns a level-dependent (or discrete time-dependent) version involving commuting variables. We show that a nice solution for this system is given by elliptic numbers. The second type involves a non-commutative version of Lucas sequences which defines the non-commutative (or abstract) Fibonacci polynomials introduced by Johann Cigler. If the non-commuting variables are specialized to be elliptic-commuting variables the abstract Fibonacci polynomials become non-commutative elliptic Fibonacci polynomials. Some properties we derive for these include their explicit expansion in terms of normalized monomials and a non-commutative elliptic Euler--Cassini identity.
We introduce a notion of $q$-deformed rational numbers and $q$-deformed continued fractions. A $q$-deformed rational is encoded by a triangulation of a polygon and can be computed recursively. The recursive formula is analogous to the $q$-deformed Pascal identitiy for the Gaussian binomial coefficients, but the Pascal triangle is replaced by the Farey graph. The coefficients of the polynomials defining the $q$-rational count quiver subrepresentations of the maximal indecomposable representation of the graph dual to the triangulation. Several other properties, such as total positivity properties, $q$-deformation of the Farey graph, matrix presentations and $q$-continuants are given, as well as a relation to the Jones polynomial of rational knots.
74 - Richard A. Moy 2017
Given a set of integers containing no 3-term arithmetic progressions, one constructs a Stanley sequence by choosing integers greedily without forming such a progression. Independent Stanley sequences are a well-structured class of Stanley sequences with two main parameters: the character $lambda(A)$ and the repeat factor $rho(A)$. Rolnick conjectured that for every $lambda in mathbb{N}_0backslash{1, 3, 5, 9, 11, 15}$, there exists an independent Stanley sequence $S(A)$ such that $lambda(A) =lambda$. This paper demonstrates that $lambda(A) otin {1, 3, 5, 9, 11, 15}$ for any independent Stanley sequence $S(A)$.
Let $G$ be a finite cyclic group of order $n ge 2$. Every sequence $S$ over $G$ can be written in the form $S=(n_1g)cdot ... cdot (n_lg)$ where $gin G$ and $n_1,..., n_l in [1,ord(g)]$, and the index $ind (S)$ of $S$ is defined as the minimum of $(n_1+ ... + n_l)/ord (g)$ over all $g in G$ with $ord (g) = n$. In this paper we prove that a sequence $S$ over $G$ of length $|S| = n$ having an element with multiplicity at least $frac{n}{2}$ has a subsequence $T$ with $ind (T) = 1$, and if the group order $n$ is a prime, then the assumption on the multiplicity can be relaxed to $frac{n-2}{10}$. On the other hand, if $n=4k+2$ with $k ge 5$, we provide an example of a sequence $S$ having length $|S| > n$ and an element with multiplicity $frac{n}{2}-1$ which has no subsequence $T$ with $ind (T) = 1$. This disproves a conjecture given twenty years ago by Lemke and Kleitman.
81 - Ji-Cai Liu 2021
We establish a congruence on sums of central $q$-binomial coefficients. From this $q$-congruence, we derive the divisibility of the $q$-trinomial coefficients introduced by Andrews and Baxter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا