Do you want to publish a course? Click here

Slashing Communication Traffic in Federated Learning by Transmitting Clustered Model Updates

79   0   0.0 ( 0 )
 Added by Yipeng Zhou
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Federated Learning (FL) is an emerging decentralized learning framework through which multiple clients can collaboratively train a learning model. However, a major obstacle that impedes the wide deployment of FL lies in massive communication traffic. To train high dimensional machine learning models (such as CNN models), heavy communication traffic can be incurred by exchanging model updates via the Internet between clients and the parameter server (PS), implying that the network resource can be easily exhausted. Compressing model updates is an effective way to reduce the traffic amount. However, a flexible unbiased compression algorithm applicable for both uplink and downlink compression in FL is still absent from existing works. In this work, we devise the Model Update Compression by Soft Clustering (MUCSC) algorithm to compress model updates transmitted between clients and the PS. In MUCSC, it is only necessary to transmit cluster centroids and the cluster ID of each model update. Moreover, we prove that: 1) The compressed model updates are unbiased estimation of their original values so that the convergence rate by transmitting compressed model updates is unchanged; 2) MUCSC can guarantee that the influence of the compression error on the model accuracy is minimized. Then, we further propose the boosted MUCSC (B-MUCSC) algorithm, a biased compression algorithm that can achieve an extremely high compression rate by grouping insignificant model updates into a super cluster. B-MUCSC is suitable for scenarios with very scarce network resource. Ultimately, we conduct extensive experiments with the CIFAR-10 and FEMNIST datasets to demonstrate that our algorithms can not only substantially reduce the volume of communication traffic in FL, but also improve the training efficiency in practical networks.

rate research

Read More

Communication of model updates between client nodes and the central aggregating server is a major bottleneck in federated learning, especially in bandwidth-limited settings and high-dimensional models. Gradient quantization is an effective way of reducing the number of bits required to communicate each model update, albeit at the cost of having a higher error floor due to the higher variance of the stochastic gradients. In this work, we propose an adaptive quantization strategy called AdaQuantFL that aims to achieve communication efficiency as well as a low error floor by changing the number of quantization levels during the course of training. Experiments on training deep neural networks show that our method can converge in much fewer communicated bits as compared to fixed quantization level setups, with little or no impact on training and test accuracy.
Federated Learning (FL) enables multiple distributed clients (e.g., mobile devices) to collaboratively train a centralized model while keeping the training data locally on the client. Compared to traditional centralized machine learning, FL offers many favorable features such as offloading operations which would usually be performed by a central server and reducing risks of serious privacy leakage. However, Byzantine clients that send incorrect or disruptive updates due to system failures or adversarial attacks may disturb the joint learning process, consequently degrading the performance of the resulting model. In this paper, we propose to mitigate these failures and attacks from a spatial-temporal perspective. Specifically, we use a clustering-based method to detect and exclude incorrect updates by leveraging their geometric properties in the parameter space. Moreover, to further handle malicious clients with time-varying behaviors, we propose to adaptively adjust the learning rate according to momentum-based update speculation. Extensive experiments on 4 public datasets demonstrate that our algorithm achieves enhanced robustness comparing to existing methods under both cross-silo and cross-device FL settings with faulty/malicious clients.
382 - Yu Zhang , Moming Duan , Duo Liu 2021
Federated learning (FL) is an emerging distributed machine learning paradigm that protects privacy and tackles the problem of isolated data islands. At present, there are two main communication strategies of FL: synchronous FL and asynchronous FL. The advantages of synchronous FL are that the model has high precision and fast convergence speed. However, this synchronous communication strategy has the risk that the central server waits too long for the devices, namely, the straggler effect which has a negative impact on some time-critical applications. Asynchronous FL has a natural advantage in mitigating the straggler effect, but there are threats of model quality degradation and server crash. Therefore, we combine the advantages of these two strategies to propose a clustered semi-asynchronous federated learning (CSAFL) framework. We evaluate CSAFL based on four imbalanced federated datasets in a non-IID setting and compare CSAFL to the baseline methods. The experimental results show that CSAFL significantly improves test accuracy by more than +5% on the four datasets compared to TA-FedAvg. In particular, CSAFL improves absolute test accuracy by +34.4% on non-IID FEMNIST compared to TA-FedAvg.
158 - Moming Duan , Duo Liu , Xinyuan Ji 2021
Federated Learning (FL) enables the multiple participating devices to collaboratively contribute to a global neural network model while keeping the training data locally. Unlike the centralized training setting, the non-IID, imbalanced (statistical heterogeneity) and distribution shifted training data of FL is distributed in the federated network, which will increase the divergences between the local models and the global model, further degrading performance. In this paper, we propose a flexible clustered federated learning (CFL) framework named FlexCFL, in which we 1) group the training of clients based on the similarities between the clients optimization directions for lower training divergence; 2) implement an efficient newcomer device cold start mechanism for framework scalability and practicality; 3) flexibly migrate clients to meet the challenge of client-level data distribution shift. FlexCFL can achieve improvements by dividing joint optimization into groups of sub-optimization and can strike a balance between accuracy and communication efficiency in the distribution shift environment. The convergence and complexity are analyzed to demonstrate the efficiency of FlexCFL. We also evaluate FlexCFL on several open datasets and made comparisons with related CFL frameworks. The results show that FlexCFL can significantly improve absolute test accuracy by +10.6% on FEMNIST compared to FedAvg, +3.5% on FashionMNIST compared to FedProx, +8.4% on MNIST compared to FeSEM. The experiment results show that FlexCFL is also communication efficient in the distribution shift environment.
Personalized federated learning (FL) aims to train model(s) that can perform well for individual clients that are highly data and system heterogeneous. Most work in personalized FL, however, assumes using the same model architecture at all clients and increases the communication cost by sending/receiving models. This may not be feasible for realistic scenarios of FL. In practice, clients have highly heterogeneous system-capabilities and limited communication resources. In our work, we propose a personalized FL framework, PerFed-CKT, where clients can use heterogeneous model architectures and do not directly communicate their model parameters. PerFed-CKT uses clustered co-distillation, where clients use logits to transfer their knowledge to other clients that have similar data-distributions. We theoretically show the convergence and generalization properties of PerFed-CKT and empirically show that PerFed-CKT achieves high test accuracy with several orders of magnitude lower communication cost compared to the state-of-the-art personalized FL schemes.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا