Do you want to publish a course? Click here

On measurement of photon polarization in radiative penguin $B$ decays to baryons

119   0   0.0 ( 0 )
 Added by Timofey Uglov
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

A measurement of the photon polarization in radiative penguin $B$ decays provides a test of the Standard Model and a probe for New Physics, that can lead to a deviation from the Standard Model prediction of left-handed photons in $bto s gamma$. We propose a new method to measure the photon polarization using the baryonic decay $B^- to Lambdabar{p} gamma$. The $P$-violating $Lambda$-hyperon decay allows a measurement of the $Lambda$ helicity to be performed, which can be uniquely related to the photon polarization in a model-independent way. The $B^- to Lambdabar{p} gamma$ decay was recently measured to have a large branching fraction providing a possibility to get meaningful results with the data already available at LHC and B-factory experiments. An increase of the $B$-meson sample at high luminosity LHC experiments and Belle II should provide a really stringent test by using this method already in the near future.



rate research

Read More

The radiative decays of $b$-baryons facilitate the direct measurement of photon helicity in $bto sgamma$ transitions thus serving as an important test of physics beyond the Standard Model. In this paper we analyze the complete angular distribution of ground state $b$-baryon ($Lambda_{b}^{0}$ and $Xi_{b}^{-}$) radiative decays to multibody final states assuming an initially polarized $b$-baryon sample. Our sensitivity study suggests that the photon polarization asymmetry can be extracted to a good accuracy along with a simultaneous measurement of the initial $b$-baryon polarization. With higher yields of $b$-baryons, achievable in subsequent runs of the Large Hadron Collider (LHC), we find that the photon polarization measurement can play a pivotal role in constraining different new physics scenarios.
147 - Akimasa Ishikawa 2016
We report on recent results on radiative and electroweak penguin B decays at Belle at KEKB accelerator.
93 - V. E. Ozcan 2006
An overview of the measurements of b->sgamma, b->dgamma and b->sll penguin transitions at the B Factories is presented.
61 - G. Hiller , M. Knecht , F. Legger 2007
We give a general parameterization of the Lambda_b --> Lambda(1520) gamma decay amplitude, applicable to any strange isosinglet spin-3/2 baryon, and calculate the branching fraction and helicity amplitudes. Large-energy form factor relations are worked out, and it is shown that the helicity-3/2 amplitudes vanish at lowest order in soft-collinear effective theory (SCET). The suppression can be tested experimentally at the LHC and elsewhere, thus providing a benchmark for SCET. We apply the results to assess the experimental reach for a possible wrong-helicity b --> s gamma dipole coupling in Lambda_b --> Lambda(1520) gamma --> p K gamma decays. Furthermore we revisit Lambda_b-polarization at hadron colliders and update the prediction from heavy-quark effective theory. Opportunities associated with b --> d gamma afforded by high-statistics Lambda_b samples are briefly discussed in the general context of CP and flavour violation.
112 - K. W. Edwards , et al. 2003
We have searched for the baryon-containing radiative penguin decays B^- -> Lambda p-bar gamma and B^- -> Sigma^0 p-bar gamma, using a sample of 9.7 million BBbar events collected at the Upsilon(4S) with the CLEO detector. We find no evidence for either, and set 90% confidence level upper limits for photons with B rest frame energy greater than 2.0 GeV of [Br(B^- -> Lambda p-bar gamma) + 0.3 Br(B^- -> Sigma^0 p-bar gamma)] < 3.3 x 10^-6, [Br(B^- -> Sigma^0 p-bar gamma) + 0.4 Br(B^- -> Lambda p-bar gamma)] < 6.4 x 10^-6. From the latter, we estimate (for photons with B rest frame energy greater than 2.0 GeV) Br(B -> X_s gamma, X_s containing baryons) < 3.8 x 10^-5. This limit implies upper limits on corrections to CLEOs recent measurement of branching fraction, mean photon energy, and variance in photon energy from b -> s gamma that are less than half the combined statistical and systematic errors quoted on these quantities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا