Do you want to publish a course? Click here

Search for gamma rays from SNe with a variable-size sliding-time-window analysis of the Fermi-LAT data

308   0   0.0 ( 0 )
 Added by Dmitry Prokhorov
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a systematic search for gamma-ray emission from supernovae (SNe) in the Fermi Large Area Telescope (LAT) Pass 8 data. The sample of targets consists of 55,880 candidates from the Open Supernova Catalog. We searched for gamma rays from SNe by means of a variable-size sliding-time-window analysis. Our results confirm the presence of transient gamma-ray emission from the sources of non-AGN classes, including transitional pulsars, solar flares, gamma-ray bursts, novae, and the Crab Nebula, which are projected near some of these SNs positions, and also strengthen support to the variable signal in the direction of SN iPTF14hls. The analysis is successful in finding both short (e.g. solar flares) and long (e.g. transitional pulsars) high flux states. Our search reveals two new gamma-ray transient signals occurred in 2019 in the directions of optical transients that are SN candidates, AT2019bvr and AT2018iwp, with their flux increases within 6 months after the dates of SNs discoveries. These signals are bright and their variability is at a higher statistical level than that of iPTF14hls. An exploration of archival multi-wavelength observations towards their positions is necessary to establish their association with SNe or other classes of sources. Our analysis, in addition, shows a bright transient gamma-ray signal at low Galactic latitudes in the direction of PSR J0205+6449. In addition, we report the results of an all-sky search for gamma-ray transient sources. This provided two additional candidates to gamma-ray transient sources.



rate research

Read More

In the work we search for the $gamma$-ray signal from M33, one of the biggest galaxies in the Local Group, by using the Pass 8 data of Fermi Large Area Telescope (LAT). No statistically significant gamma-ray emission has been detected in the direction of M33 and we report a new upper limit of high energy ($>100,rm MeV$) photon flux of $2.3times 10^{-9},rm ph,cm^{-2},s^{-1}$, which is more strict than previous constrains and implies a cosmic ray density of M33 lower than that speculated previously. Nevertheless the current limit is still in agreement with the correlation of star formation rate and $gamma$-ray luminosity inferred from the Local group galaxies and a few nearby starburst galaxies.
203 - Paola Grandi 2011
We review the high energy properties of Misaligned AGNs associated with gamma-ray sources detected by Fermi in 24 months of survey. Most of them are nearby emission low power radio galaxies (i.e FRIs) which probably have structured jets. On the contrary, high power radio sources (i.e FRIIs) with GeV emission are rare. The small number of FRIIs does not seem to be related to their higher redshifts. Assuming proportionality between the radio core flux and the gamma-ray flux, several of them are expected to be bright enough to be detected above 100 MeV in spite of their distance. We suggest that beaming/jet structural differences are responsible for the detection rate discrepancy observed between FRIs and FRIIs.
Due to their proximity, high dark-matter content, and apparent absence of non-thermal processes, Milky Way dwarf spheroidal satellite galaxies (dSphs) are excellent targets for the indirect detection of dark matter. Recently, eight new dSph candidates were discovered using the first year of data from the Dark Energy Survey (DES). We searched for gamma-ray emission coincident with the positions of these new objects in six years of Fermi Large Area Telescope data. We found no significant excesses of gamma-ray emission. Under the assumption that the DES candidates are dSphs with dark matter halo properties similar to the known dSphs, we computed individual and combined limits on the velocity-averaged dark matter annihilation cross section for these new targets. If the estimated dark-matter content of these dSph candidates is confirmed, they will constrain the annihilation cross section to lie below the thermal relic cross section for dark matter particles with masses < 20 GeV annihilating via the b-bbar or tau+tau- channels.
The Fermi Large Area Telescope (LAT) is a powerful pulsar detector, as demonstrated by the over one hundred objects in its second catalog of pulsars. Pass 8 is a new reconstruction and event selection strategy developed by the Fermi-LAT collaboration. Due to the increased acceptance at low energy, Pass 8 improves the pulsation detection sensitivity. Ten new pulsars rise above the 5 sigma threshold and are presented in this work, as well as one previously seen with the former Pass 7 reconstruction. More than 60$%$ of the known pulsars with spin-down power ($dot{E}$) greater than $10^{36}$ erg/s show pulsations in gamma-rays, as seen with the Fermi Large Area Telescope. Many non-detections of these energetic pulsars are thought to be a consequence of a high background level, or a large distance leading to a flux below the sensitivity limit of the instrument. The gamma-ray beams of the others probably miss the Earth. The new Pass 8 data now allows the detection of gamma ray pulsations from three of these high spin-down pulsars, PSRs J1828$-$1101, J1831$-$0952 and J1837$-$0604, as well as three others with $dot{E}$ $ge 10^{35}$ erg/s. We report on their properties and we discuss the reasons for their detection with Pass 8.
With 91 months of the publicly available Fermi-LAT Pass 8 data, we analyze the gamma-ray emission from the Milky Way satellites to search for potential line signals due to the annihilation of dark matter particles into double photons. The searched targets include a sample of dwarf spheroidal galaxies, the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC). No significant line emission has been found neither in the stacked dwarf galaxy sample nor in the direction of LMC/SMC. The corresponding upper limits on the cross section of DM annihilation into two photons are derived. Compared with results of previous gamma-ray line searches with the Pass 7 data, the current constraints on the line emission from dwarf spheroidal galaxies has been significantly improved in a wide energy range. With the rapid increase of the sample of dwarf spheroidal galaxies (candidates), we expect that the sensitivity of gamma ray line searches will be significantly improved in the near future.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا