Do you want to publish a course? Click here

Search for Gamma-Ray Emission from DES Dwarf Spheroidal Galaxy Candidates with Fermi-LAT Data

294   0   0.0 ( 0 )
 Added by Alex Drlica-Wagner
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Due to their proximity, high dark-matter content, and apparent absence of non-thermal processes, Milky Way dwarf spheroidal satellite galaxies (dSphs) are excellent targets for the indirect detection of dark matter. Recently, eight new dSph candidates were discovered using the first year of data from the Dark Energy Survey (DES). We searched for gamma-ray emission coincident with the positions of these new objects in six years of Fermi Large Area Telescope data. We found no significant excesses of gamma-ray emission. Under the assumption that the DES candidates are dSphs with dark matter halo properties similar to the known dSphs, we computed individual and combined limits on the velocity-averaged dark matter annihilation cross section for these new targets. If the estimated dark-matter content of these dSph candidates is confirmed, they will constrain the annihilation cross section to lie below the thermal relic cross section for dark matter particles with masses < 20 GeV annihilating via the b-bbar or tau+tau- channels.



rate research

Read More

Galaxy clusters are one of the prime sites to search for dark matter (DM) annihilation signals. Depending on the substructure of the DM halo of a galaxy cluster and the cross sections for DM annihilation channels, these signals might be detectable by the latest generation of $gamma$-ray telescopes. Here we use three years of Fermi Large Area Telescope (LAT) data, which are the most suitable for searching for very extended emission in the vicinity of nearby Virgo galaxy cluster. Our analysis reveals statistically significant extended emission which can be well characterized by a uniformly emitting disk profile with a radius of 3deg that moreover is offset from the cluster center. We demonstrate that the significance of this extended emission strongly depends on the adopted interstellar emission model (IEM) and is most likely an artifact of our incomplete description of the IEM in this region. We also search for and find new point source candidates in the region. We then derive conservative upper limits on the velocity-averaged DM pair annihilation cross section from Virgo. We take into account the potential $gamma$-ray flux enhancement due to DM sub-halos and its complex morphology as a merging cluster. For DM annihilating into $boverline{b}$, assuming a conservative sub-halo model setup, we find limits that are between 1 and 1.5 orders of magnitude above the expectation from the thermal cross section for $m_{mathrm{DM}}lesssim100,mathrm{GeV}$. In a more optimistic scenario, we exclude $langle sigma v ranglesim3times10^{-26},mathrm{cm^{3},s^{-1}}$ for $m_{mathrm{DM}}lesssim40,mathrm{GeV}$ for the same channel. Finally, we derive upper limits on the $gamma$-ray-flux produced by hadronic cosmic-ray interactions in the inter cluster medium. We find that the volume-averaged cosmic-ray-to-thermal pressure ratio is less than $sim6%$.
In the work we search for the $gamma$-ray signal from M33, one of the biggest galaxies in the Local Group, by using the Pass 8 data of Fermi Large Area Telescope (LAT). No statistically significant gamma-ray emission has been detected in the direction of M33 and we report a new upper limit of high energy ($>100,rm MeV$) photon flux of $2.3times 10^{-9},rm ph,cm^{-2},s^{-1}$, which is more strict than previous constrains and implies a cosmic ray density of M33 lower than that speculated previously. Nevertheless the current limit is still in agreement with the correlation of star formation rate and $gamma$-ray luminosity inferred from the Local group galaxies and a few nearby starburst galaxies.
Context: Very-high-energy (VHE; E>100 GeV) {gamma}-ray emission from blazars inevitably gives rise to electron-positron pair production through the interaction of these {gamma}-rays with the Extragalactic Background Light (EBL). Depending on the magnetic fields in the proximity of the source, the cascade initiated from pair production can result in either an isotropic halo around an initially beamed source or a magnetically broadened cascade flux. Aims: Both extended pair halo (PH) and magnetically broadened cascade (MBC) emission from regions surrounding the blazars 1ES 1101-232, 1ES 0229+200 and PKS 2155-304 were searched for, using VHE {gamma}-ray data taken with the High Energy Stereoscopic System (H.E.S.S.), and high energy (HE; 100 MeV<E<100 GeV) {gamma}-ray data with the Fermi Large Area Telescope (LAT). Methods: By comparing the angular distributions of the reconstructed gamma-ray events to the angular profiles calculated from detailed theoretical models, the presence of PH and MBC was investigated. Results: Upper limits on the extended emission around 1ES 1101-232, 1ES 0229+200 and PKS 2155-304 are found to be at a level of few percent of the Crab nebula flux above 1 TeV, depending on the assumed photon index of the cascade emission. Assuming strong Extra-Galactic Magnetic Field (EGMF) values, > 10$^{-12}$G, this limits the production of pair halos developing from electromagnetic cascades. For weaker magnetic fields, in which electromagnetic cascades would result in magnetically broadened cascades, EGMF strengths in the range (0.3 - 3)$times 10^{-15}$G were excluded for PKS 2155-304 at the 99% confidence level, under the assumption of a 1 Mpc coherence length.
We report on a search for monochromatic $gamma$-ray features in the spectra of galaxy clusters observed by the emph{Fermi} Large Area Telescope. Galaxy clusters are the largest structures in the Universe that are bound by dark matter (DM), making them an important testing ground for possible self-interactions or decays of the DM particles. Monochromatic $gamma$-ray lines provide a unique signature due to the absence of astrophysical backgrounds and are as such considered a smoking-gun signature for new physics. An unbinned joint likelihood analysis of the sixteen most promising clusters using five years of data at energies between 10 and 400 GeV revealed no significant features. For the case of self-annihilation, we set upper limits on the monochromatic velocity-averaged interaction cross section. These limits are compatible with those obtained from observations of the Galactic Center, albeit weaker due to the larger distance to the studied clusters.
Indirect dark matter searches with ground-based gamma-ray observatories provide an alternative for identifying the particle nature of dark matter that is complementary to that of direct search or accelerator production experiments. We present the results of observations of the dwarf spheroidal galaxies Draco, Ursa Minor, Bootes 1, and Willman 1 conducted by VERITAS. These galaxies are nearby dark matter dominated objects located at a typical distance of several tens of kiloparsecs for which there are good measurements of the dark matter density profile from stellar velocity measurements. Since the conventional astrophysical background of very high energy gamma rays from these objects appears to be negligible, they are good targets to search for the secondary gamma-ray photons produced by interacting or decaying dark matter particles. No significant gamma-ray flux above 200 GeV was detected from these four dwarf galaxies for a typical exposure of ~20 hours. The 95% confidence upper limits on the integral gamma-ray flux are in the range 0.4-2.2x10^-12 photons cm^-2s^-1. We interpret this limiting flux in the context of pair annihilation of weakly interacting massive particles and derive constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the WIMPs. The limits are obtained under conservative assumptions regarding the dark matter distribution in dwarf galaxies and are approximately three orders of magnitude above the generic theoretical prediction for WIMPs in the minimal supersymmetric standard model framework. However significant uncertainty exists in the dark matter distribution as well as the neutralino cross sections which under favorable assumptions could further lower the limits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا