Do you want to publish a course? Click here

Large $k$ topological quantum computer

111   0   0.0 ( 0 )
 Added by Nikita Kolganov
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Chern-Simons topological quantum computer is a device that can be effectively described by the Chern-Simons topological quantum field theory and used for quantum computations. Quantum qudit gates of this quantum computer are represented by sequences of quantum $mathcal{R}$-matrices. Its dimension and explicit form depend on the parameters of the Chern-Simons theory -- level $k$, gauge group $SU(N)$, and representation, which is chosen to be symmetric representation $[r]$. In this paper, we examine the universality of such a quantum computer. We prove that for sufficiently large $k$ it is universal, and the minimum allowed value of $k$ depends on the remaining parameters $r$ and $N$.



rate research

Read More

Algorithms for triangle-finding, the smallest nontrivial instance of the k-clique problem, have been proposed for quantum computers. Still, those algorithms assume the use of fixed access time quantum RAM (QRAM). We present a practical gate-based approach to both the triangle-finding problem and its NP-hard k-clique generalization. We examine both constant factors for near-term implementation on a Noisy Intermediate Scale Quantum computer (NISQ) device, and the scaling of the problem to evaluate long-term use of quantum computers. We compare the time complexity and circuit practicality of the theoretical approach and actual implementation. We propose and apply two different strategies to the k-clique problem, examining the circuit size of Qiskit implementations. We analyze our implementations by simulating triangle finding with various error models, observing the effect on damping the amplitude of the correct answer, and compare to execution on six real IBMQ machines. Finally, we estimate the date when the methods proposed can run effectively on an actual device based on IBMs quantum volume exponential growth forecast and the results of our error analysis.
We port Domain-Decomposed-alpha-AMG solver to the K computer. The system has 8 cores and 16 GB memory per node, of which theoretical peak is 128 GFlops (82,944 nodes in total). Its feature, as many as 256 registers per core and as large as 0.5 byte/Flop ratio, requires a different tuning from other machines. In order to use more registers, we change some of the data structure and rewrite matrix-vector operations with intrinsics. The performance is improved by more than a factor two for twelve solves including the setup. The efficiency is still about 5% after the optimization, which is lower than a previously tuned mixed precision solver for the K computer, 22%. The throughput is, however, more than two times better for a physical point configuration.
We present a quantum algorithm to compute the entanglement spectrum of arbitrary quantum states. The interesting universal part of the entanglement spectrum is typically contained in the largest eigenvalues of the density matrix which can be obtained from the lower Renyi entropies through the Newton-Girard method. Obtaining the $p$ largest eigenvalues ($lambda_1>lambda_2ldots>lambda_p$) requires a parallel circuit depth of $mathcal{O}(p(lambda_1/lambda_p)^p)$ and $mathcal{O}(plog(N))$ qubits where up to $p$ copies of the quantum state defined on a Hilbert space of size $N$ are needed as the input. We validate this procedure for the entanglement spectrum of the topologically-ordered Laughlin wave function corresponding to the quantum Hall state at filling factor $ u=1/3$. Our scaling analysis exposes the tradeoffs between time and number of qubits for obtaining the entanglement spectrum in the thermodynamic limit using finite-size digital quantum computers. We also illustrate the utility of the second Renyi entropy in predicting a topological phase transition and in extracting the localization length in a many-body localized system.
We investigate how topological entanglement of Chern-Simons theory is captured in a string theoretic realization. Our explorations are motivated by a desire to understand how quantum entanglement of low energy open string degrees of freedom is encoded in string theory (beyond the oft discussed classical gravity limit). Concretely, we realize the Chern-Simons theory as the worldvolume dynamics of topological D-branes in the topological A-model string theory on a Calabi-Yau target. Via the open/closed topological string duality one can map this theory onto a pure closed topological A-model string on a different target space, one which is related to the original Calabi-Yau geometry by a geometric/conifold transition. We demonstrate how to uplift the replica construction of Chern-Simons theory directly onto the closed string and show that it provides a meaningful definition of reduced density matrices in topological string theory. Furthermore, we argue that the replica construction commutes with the geometric transition, thereby providing an explicit closed string dual for computing reduced states, and Renyi and von Neumann entropies thereof. While most of our analysis is carried out for Chern-Simons on S^3, the emergent picture is rather general. Specifically, we argue that quantum entanglement on the open string side is mapped onto quantum entanglement on the closed string side and briefly comment on the implications of our result for physical holographic theories where entanglement has been argued to be crucial ingredient for the emergence of classical geometry.
We outline a strategy to compute deeply inelastic scattering structure functions using a hybrid quantum computer. Our approach takes advantage of the representation of the fermion determinant in the QCD path integral as a quantum mechanical path integral over 0+1-dimensional fermionic and bosonic worldlines. The proper time evolution of these worldlines can be determined on a quantum computer. While extremely challenging in general, the problem simplifies in the Regge limit of QCD, where the interaction of the worldlines with gauge fields is strongly localized in proper time and the corresponding quantum circuits can be written down. As a first application, we employ the Color Glass Condensate effective theory to construct the quantum algorithm for a simple dipole model of the $F_2$ structure function. We outline further how this computation scales up in complexity and extends in scope to other real-time correlation functions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا