Do you want to publish a course? Click here

DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks

75   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Data movement between the CPU and main memory is a first-order obstacle against improving performance, scalability, and energy efficiency in modern systems. Computer systems employ a range of techniques to reduce overheads tied to data movement, spanning from traditional mechanisms (e.g., deep multi-level cache hierarchies, aggressive hardware prefetchers) to emerging techniques such as Near-Data Processing (NDP), where some computation is moved close to memory. Our goal is to methodically identify potential sources of data movement over a broad set of applications and to comprehensively compare traditional compute-centric data movement mitigation techniques to more memory-centric techniques, thereby developing a rigorous understanding of the best techniques to mitigate each source of data movement. With this goal in mind, we perform the first large-scale characterization of a wide variety of applications, across a wide range of application domains, to identify fundamental program properties that lead to data movement to/from main memory. We develop the first systematic methodology to classify applications based on the sources contributing to data movement bottlenecks. From our large-scale characterization of 77K functions across 345 applications, we select 144 functions to form the first open-source benchmark suite (DAMOV) for main memory data movement studies. We select a diverse range of functions that (1) represent different types of data movement bottlenecks, and (2) come from a wide range of application domains. Using NDP as a case study, we identify new insights about the different data movement bottlenecks and use these insights to determine the most suitable data movement mitigation mechanism for a particular application. We open-source DAMOV and the complete source code for our new characterization methodology at https://github.com/CMU-SAFARI/DAMOV.



rate research

Read More

Several fundamental changes in technology indicate domain-specific hardware and software co-design is the only path left. In this context, architecture, system, data management, and machine learning communities pay greater attention to innovative big data and AI algorithms, architecture, and systems. Unfortunately, complexity, diversity, frequently-changed workloads, and rapid evolution of big data and AI systems raise great challenges. First, the traditional benchmarking methodology that creates a new benchmark or proxy for every possible workload is not scalable, or even impossible for Big Data and AI benchmarking. Second, it is prohibitively expensive to tailor the architecture to characteristics of one or more application or even a domain of applications. We consider each big data and AI workload as a pipeline of one or more classes of units of computation performed on different initial or intermediate data inputs, each class of which we call a data motif. On the basis of our previous work that identifies eight data motifs taking up most of the run time of a wide variety of big data and AI workloads, we propose a scalable benchmarking methodology that uses the combination of one or more data motifs---to represent diversity of big data and AI workloads. Following this methodology, we present a unified big data and AI benchmark suite---BigDataBench 4.0, publicly available from~url{http://prof.ict.ac.cn/BigDataBench}. This unified benchmark suite sheds new light on domain-specific hardware and software co-design: tailoring the system and architecture to characteristics of the unified eight data motifs other than one or more application case by case. Also, for the first time, we comprehensively characterize the CPU pipeline efficiency using the benchmarks of seven workload types in BigDataBench 4.0.
Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a significant overhead in terms of both latency and energy. A major reason is that this communication happens through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data movement bottleneck requires a paradigm where the memory system assumes an active role in computing by integrating processing capabilities. This paradigm is known as processing-in-memory (PIM). Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-stacked memory technologies that integrate memory with a logic layer where processing elements can be easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available real-world PIM architecture. This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architecture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based PIM system using microbenchmarks to assess various architecture limits such as compute throughput and memory bandwidth, yielding new insights. Second, we present PrIM, a benchmark suite of 16 workloads from different application domains (e.g., linear algebra, databases, graph processing, neural networks, bioinformatics).
Domain-specific software and hardware co-design is encouraging as it is much easier to achieve efficiency for fewer tasks. Agile domain-specific benchmarking speeds up the process as it provides not only relevant design inputs but also relevant metrics, and tools. Unfortunately, modern workloads like Big data, AI, and Internet services dwarf the traditional one in terms of code size, deployment scale, and execution path, and hence raise serious benchmarking challenges. This paper proposes an agile domain-specific benchmarking methodology. Together with seventeen industry partners, we identify ten important end-to-end application scenarios, among which sixteen representative AI tasks are distilled as the AI component benchmarks. We propose the permutations of essential AI and non-AI component benchmarks as end-to-end benchmarks. An end-to-end benchmark is a distillation of the essential attributes of an industry-scale application. We design and implement a highly extensible, configurable, and flexible benchmark framework, on the basis of which, we propose the guideline for building end-to-end benchmarks, and present the first end-to-end Internet service AI benchmark. The preliminary evaluation shows the value of our benchmark suite---AIBench against MLPerf and TailBench for hardware and software designers, micro-architectural researchers, and code developers. The specifications, source code, testbed, and results are publicly available from the web site url{http://www.benchcouncil.org/AIBench/index.html}.
To meet the extreme compute demands for deep learning across commercial and scientific applications, dataflow accelerators are becoming increasingly popular. While these domain-specific accelerators are not fully programmable like CPUs and GPUs, they retain varying levels of flexibility with respect to data orchestration, i.e., dataflow and tiling optimizations to enhance efficiency. There are several challenges when designing new algorithms and mapping approaches to execute the algorithms for a target problem on new hardware. Previous works have addressed these challenges individually. To address this challenge as a whole, in this work, we present a HW-SW co-design ecosystem for spatial accelerators called Union within the popular MLIR compiler infrastructure. Our framework allows exploring different algorithms and their mappings on several accelerator cost models. Union also includes a plug-and-play library of accelerator cost models and mappers which can easily be extended. The algorithms and accelerator cost models are connected via a novel mapping abstraction that captures the map space of spatial accelerators which can be systematically pruned based on constraints from the hardware, workload, and mapper. We demonstrate the value of Union for the community with several case studies which examine offloading different tensor operations(CONV/GEMM/Tensor Contraction) on diverse accelerator architectures using different mapping schemes.
High performance multi-GPU computing becomes an inevitable trend due to the ever-increasing demand on computation capability in emerging domains such as deep learning, big data and planet-scale simulations. However, the lack of deep understanding on how modern GPUs can be connected and the real impact of state-of-the-art interconnect technology on multi-GPU application performance become a hurdle. In this paper, we fill the gap by conducting a thorough evaluation on five latest types of modern GPU interconnects: PCIe, NVLink-V1, NVLink-V2, NVLink-SLI and NVSwitch, from six high-end servers and HPC platforms: NVIDIA P100-DGX-1, V100-DGX-1, DGX-2, OLCFs SummitDev and Summit supercomputers, as well as an SLI-linked system with two NVIDIA Turing RTX-2080 GPUs. Based on the empirical evaluation, we have observed four new types of GPU communication network NUMA effects: three are triggered by NVLinks topology, connectivity and routing, while one is caused by PCIe chipset design issue. These observations indicate that, for an application running in a multi-GPU node, choosing the right GPU combination can impose considerable impact on GPU communication efficiency, as well as the applications overall performance. Our evaluation can be leveraged in building practical multi-GPU performance models, which are vital for GPU task allocation, scheduling and migration in a shared environment (e.g., AI cloud and HPC centers), as well as communication-oriented performance tuning.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا