Do you want to publish a course? Click here

Evaluating Modern GPU Interconnect: PCIe, NVLink, NV-SLI, NVSwitch and GPUDirect

168   0   0.0 ( 0 )
 Added by Ang Li
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

High performance multi-GPU computing becomes an inevitable trend due to the ever-increasing demand on computation capability in emerging domains such as deep learning, big data and planet-scale simulations. However, the lack of deep understanding on how modern GPUs can be connected and the real impact of state-of-the-art interconnect technology on multi-GPU application performance become a hurdle. In this paper, we fill the gap by conducting a thorough evaluation on five latest types of modern GPU interconnects: PCIe, NVLink-V1, NVLink-V2, NVLink-SLI and NVSwitch, from six high-end servers and HPC platforms: NVIDIA P100-DGX-1, V100-DGX-1, DGX-2, OLCFs SummitDev and Summit supercomputers, as well as an SLI-linked system with two NVIDIA Turing RTX-2080 GPUs. Based on the empirical evaluation, we have observed four new types of GPU communication network NUMA effects: three are triggered by NVLinks topology, connectivity and routing, while one is caused by PCIe chipset design issue. These observations indicate that, for an application running in a multi-GPU node, choosing the right GPU combination can impose considerable impact on GPU communication efficiency, as well as the applications overall performance. Our evaluation can be leveraged in building practical multi-GPU performance models, which are vital for GPU task allocation, scheduling and migration in a shared environment (e.g., AI cloud and HPC centers), as well as communication-oriented performance tuning.



rate research

Read More

Data movement between the CPU and main memory is a first-order obstacle against improving performance, scalability, and energy efficiency in modern systems. Computer systems employ a range of techniques to reduce overheads tied to data movement, spanning from traditional mechanisms (e.g., deep multi-level cache hierarchies, aggressive hardware prefetchers) to emerging techniques such as Near-Data Processing (NDP), where some computation is moved close to memory. Our goal is to methodically identify potential sources of data movement over a broad set of applications and to comprehensively compare traditional compute-centric data movement mitigation techniques to more memory-centric techniques, thereby developing a rigorous understanding of the best techniques to mitigate each source of data movement. With this goal in mind, we perform the first large-scale characterization of a wide variety of applications, across a wide range of application domains, to identify fundamental program properties that lead to data movement to/from main memory. We develop the first systematic methodology to classify applications based on the sources contributing to data movement bottlenecks. From our large-scale characterization of 77K functions across 345 applications, we select 144 functions to form the first open-source benchmark suite (DAMOV) for main memory data movement studies. We select a diverse range of functions that (1) represent different types of data movement bottlenecks, and (2) come from a wide range of application domains. Using NDP as a case study, we identify new insights about the different data movement bottlenecks and use these insights to determine the most suitable data movement mitigation mechanism for a particular application. We open-source DAMOV and the complete source code for our new characterization methodology at https://github.com/CMU-SAFARI/DAMOV.
To meet the extreme compute demands for deep learning across commercial and scientific applications, dataflow accelerators are becoming increasingly popular. While these domain-specific accelerators are not fully programmable like CPUs and GPUs, they retain varying levels of flexibility with respect to data orchestration, i.e., dataflow and tiling optimizations to enhance efficiency. There are several challenges when designing new algorithms and mapping approaches to execute the algorithms for a target problem on new hardware. Previous works have addressed these challenges individually. To address this challenge as a whole, in this work, we present a HW-SW co-design ecosystem for spatial accelerators called Union within the popular MLIR compiler infrastructure. Our framework allows exploring different algorithms and their mappings on several accelerator cost models. Union also includes a plug-and-play library of accelerator cost models and mappers which can easily be extended. The algorithms and accelerator cost models are connected via a novel mapping abstraction that captures the map space of spatial accelerators which can be systematically pruned based on constraints from the hardware, workload, and mapper. We demonstrate the value of Union for the community with several case studies which examine offloading different tensor operations(CONV/GEMM/Tensor Contraction) on diverse accelerator architectures using different mapping schemes.
268 - Jie Zhang , Myoungsoo Jung 2021
Traditional graphics processing units (GPUs) suffer from the low memory capacity and demand for high memory bandwidth. To address these challenges, we propose Ohm-GPU, a new optical network based heterogeneous memory design for GPUs. Specifically, Ohm-GPU can expand the memory capacity by combing a set of high-density 3D XPoint and DRAM modules as heterogeneous memory. To prevent memory channels from throttling throughput of GPU memory system, Ohm-GPU replaces the electrical lanes in the traditional memory channel with a high-performance optical network. However, the hybrid memory can introduce frequent data migrations between DRAM and 3D XPoint, which can unfortunately occupy the memory channel and increase the optical network traffic. To prevent the intensive data migrations from blocking normal memory services, Ohm-GPU revises the existing memory controller and designs a new optical network infrastructure, which enables the memory channel to serve the data migrations and memory requests, in parallel. Our evaluation results reveal that Ohm-GPU can improve the performance by 181% and 27%, compared to a DRAM-based GPU memory system and the baseline optical network based heterogeneous memory system, respectively.
The CMOS integrated chips at advanced technology nodes are becoming more vulnerable to various sources of faults like manufacturing imprecisions, variations, aging, etc. Additionally, the intentional fault attacks (e.g., high power microwave, cybersecurity threats, etc.) and environmental effects (i.e., radiation) also pose reliability threats to integrated circuits. Though the traditional hardware redundancy-based techniques like Triple Modular Redundancy (TMR), Quadded (QL) Logic etc. mitigate the risk to some extent, they add huge hardware overhead and are not very effective. Truly polymorphic circuits that are inherently capable of achieving multiple functionalities in a limited footprint could enhance the faultresilience/recovery of the circuits with limited overhead. We demonstrate a novel crosstalk logic based polymorphic circuit approach to achieve compact and efficient fault resilient circuits. We show a range of polymorphic primitive gates and their usage in a functional unit. The functional unit is a single arithmetic circuit that is capable of delivering Multiplication/Sorting/Addition output depending on the control inputs. Using such polymorphic computing units in an ALU would imply that a correct path for functional output is possible even when 2/3rd of the ALU is damaged. Our comparison results with respect to existing polymorphic techniques and CMOS reveal 28% and 62% reduction in transistor count respectively for the same functionalities. In conjunction with fault detection algorithms, the proposed polymorphic circuit concept can be transformative for fault tolerant circuit design directions with minimum overhead.
Reliability is a fundamental requirement in any microprocessor to guarantee correct execution over its lifetime. The design rules related to reliability depend on the process technology being used and the expected operating conditions of the device. To meet reliability requirements, advanced process technologies (28 nm and below) impose highly challenging design rules. Such design-for-reliability rules have become a major burden on the flow of VLSI implementation because of the severe physical constraints they impose. This paper focuses on electromigration (EM), which is one of the major critical factors affecting semiconductor reliability. EM is the aging process of on-die wires and vias and is induced by excessive current flow that can damage wires and may also significantly impact the integrated-circuit clock frequency. EM exerts a comprehensive global effect on devices because it impacts wires that may reside inside the standard or custom logical cells, between logical cells, inside memory elements, and within wires that interconnect functional blocks. The design-implementation flow (synthesis and place-and-route) currently detects violations of EM-reliability rules and attempts to solve them. In contrast, this paper proposes a new approach to enhance these flows by using EM-aware architecture. Our results show that the proposed solution can relax EM design efforts in microprocessors and more than double microprocessor lifetime. This work demonstrates this proposed approach for modern microprocessors, although the principals and ideas can be adapted to other cases as well.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا