No Arabic abstract
We introduce FRONTMATTER: a tool to automatically mine both user interface models and behavior of Android apps at a large scale with high precision. Given an app, FRONTMATTER statically extracts all declared screens, the user interface elements, their textual and graphical features, as well as Android APIs invoked by interacting with them. Executed on tens of thousands of real-world apps, FRONTMATTER opens the door for comprehensive mining of mobile user interfaces, jumpstarting empirical research at a large scale, addressing questions such as How many travel apps require registration?, Which apps do not follow accessibility guidelines?, Does the user interface correspond to the description?, and many more. FRONTMATTER and the mined dataset are available under an open-source license.
With growing access to versatile robotics, it is beneficial for end users to be able to teach robots tasks without needing to code a control policy. One possibility is to teach the robot through successful task executions. However, near-optimal demonstrations of a task can be difficult to provide and even successful demonstrations can fail to capture task aspects key to robust skill replication. Here, we propose a learning from demonstration (LfD) approach that enables learning of robust task definitions without the need for near-optimal demonstrations. We present a novel algorithmic framework for learning tasks based on the ergodic metric -- a measure of information content in motion. Moreover, we make use of negative demonstrations -- demonstrations of what not to do -- and show that they can help compensate for imperfect demonstrations, reduce the number of demonstrations needed, and highlight crucial task elements improving robot performance. In a proof-of-concept example of cart-pole inversion, we show that negative demonstrations alone can be sufficient to successfully learn and recreate a skill. Through a human subject study with 24 participants, we show that consistently more information about a task can be captured from combined positive and negative (posneg) demonstrations than from the same amount of just positive demonstrations. Finally, we demonstrate our learning approach on simulated tasks of target reaching and table cleaning with a 7-DoF Franka arm. Our results point towards a future with robust, data-efficient LfD for novice users.
Within a search session users often apply different search terms, as well as different variations and combinations of them. This way, they want to make sure that they find relevant information for different stages and aspects of their information task. Research questions which arise from this search ap- proach are: Where do users get all the ideas, hints and suggestions for new search terms or their variations from? How many ideas come from the user? How many from outside the IR system? What is the role of the used search sys- tem? To investigate these questions we used data from two experiments: first, from a user study with eye tracking data; second, from a large-scale log analy- sis. We found that in both experiments a large part of the search terms has been explicitly seen or shown before on the interface of the search system.
Natural Language Processing (NLP) models propagate social biases about protected attributes such as gender, race, and nationality. To create interventions and mitigate these biases and associated harms, it is vital to be able to detect and measure such biases. While many existing works propose bias evaluation methodologies for different tasks, there remains a need to cohesively understand what biases and normative harms each of these measures captures and how different measures compare. To address this gap, this work presents a comprehensive survey of existing bias measures in NLP as a function of the associated NLP tasks, metrics, datasets, and social biases and corresponding harms. This survey also organizes metrics into different categories to present advantages and disadvantages. Finally, we propose a documentation standard for bias measures to aid their development, categorization, and appropriate usage.
The rapid progress in artificial intelligence (AI) and machine learning has opened unprecedented analytics possibilities in various team and individual sports, including baseball, basketball, and tennis. More recently, AI techniques have been applied to football, due to a huge increase in data collection by professional teams, increased computational power, and advances in machine learning, with the goal of better addressing new scientific challenges involved in the analysis of both individual players and coordinated teams behaviors. The research challenges associated with predictive and prescriptive football analytics require new developments and progress at the intersection of statistical learning, game theory, and computer vision. In this paper, we provide an overarching perspective highlighting how the combination of these fields, in particular, forms a unique microcosm for AI research, while offering mutual benefits for professional teams, spectators, and broadcasters in the years to come. We illustrate that this duality makes football analytics a game changer of tremendous value, in terms of not only changing the game of football itself, but also in terms of what this domain can mean for the field of AI. We review the state-of-the-art and exemplify the types of analysis enabled by combining the aforementioned fields, including illustrative examples of counterfactual analysis using predictive models, and the combination of game-theoretic analysis of penalty kicks with statistical learning of player attributes. We conclude by highlighting envisioned downstream impacts, including possibilities for extensions to other sports (real and virtual).
In the present paper, we investigate the cosmographic problem using the bias-variance trade-off. We find that both the z-redshift and the $y=z/(1+z)$-redshift can present a small bias estimation. It means that the cosmography can describe the supernova data more accurately. Minimizing risk, it suggests that cosmography up to the second order is the best approximation. Forecasting the constraint from future measurements, we find that future supernova and redshift drift can significantly improve the constraint, thus having the potential to solve the cosmographic problem. We also exploit the values of cosmography on the deceleration parameter and equation of state of dark energy $w(z)$. We find that supernova cosmography cannot give stable estimations on them. However, much useful information was obtained, such as that the cosmography favors a complicated dark energy with varying $w(z)$, and the derivative $dw/dz<0$ for low redshift. The cosmography is helpful to model the dark energy.