Do you want to publish a course? Click here

What do Bias Measures Measure?

121   0   0.0 ( 0 )
 Added by Sunipa Dev
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Natural Language Processing (NLP) models propagate social biases about protected attributes such as gender, race, and nationality. To create interventions and mitigate these biases and associated harms, it is vital to be able to detect and measure such biases. While many existing works propose bias evaluation methodologies for different tasks, there remains a need to cohesively understand what biases and normative harms each of these measures captures and how different measures compare. To address this gap, this work presents a comprehensive survey of existing bias measures in NLP as a function of the associated NLP tasks, metrics, datasets, and social biases and corresponding harms. This survey also organizes metrics into different categories to present advantages and disadvantages. Finally, we propose a documentation standard for bias measures to aid their development, categorization, and appropriate usage.



rate research

Read More

Natural Language Processing (NLP) systems learn harmful societal biases that cause them to amplify inequality as they are deployed in more and more situations. To guide efforts at debiasing these systems, the NLP community relies on a variety of metrics that quantify bias in models. Some of these metrics are intrinsic, measuring bias in word embedding spaces, and some are extrinsic, measuring bias in downstream tasks that the word embeddings enable. Do these intrinsic and extrinsic metrics correlate with each other? We compare intrinsic and extrinsic metrics across hundreds of trained models covering different tasks and experimental conditions. Our results show no reliable correlation between these metrics that holds in all scenarios across tasks and languages. We urge researchers working on debiasing to focus on extrinsic measures of bias, and to make using these measures more feasible via creation of new challenge sets and annotated test data. To aid this effort, we release code, a new intrinsic metric, and an annotated test set focused on gender bias in hate speech.
Recent research towards understanding neural networks probes models in a top-down manner, but is only able to identify model tendencies that are known a priori. We propose Susceptibility Identification through Fine-Tuning (SIFT), a novel abstractive method that uncovers a models preferences without imposing any prior. By fine-tuning an autoencoder with the gradients from a fixed classifier, we are able to extract propensities that characterize different kinds of classifiers in a bottom-up manner. We further leverage the SIFT architecture to rephrase sentences in order to predict the opposing class of the ground truth label, uncovering potential artifacts encoded in the fixed classification model. We evaluate our method on three diverse tasks with four different models. We contrast the propensities of the models as well as reproduce artifacts reported in the literature.
Increasingly, software is making autonomous decisions in case of criminal sentencing, approving credit cards, hiring employees, and so on. Some of these decisions show bias and adversely affect certain social groups (e.g. those defined by sex, race, age, marital status). Many prior works on bias mitigation take the following form: change the data or learners in multiple ways, then see if any of that improves fairness. Perhaps a better approach is to postulate root causes of bias and then applying some resolution strategy. This paper postulates that the root causes of bias are the prior decisions that affect- (a) what data was selected and (b) the labels assigned to those examples. Our Fair-SMOTE algorithm removes biased labels; and rebalances internal distributions such that based on sensitive attribute, examples are equal in both positive and negative classes. On testing, it was seen that this method was just as effective at reducing bias as prior approaches. Further, models generated via Fair-SMOTE achieve higher performance (measured in terms of recall and F1) than other state-of-the-art fairness improvement algorithms. To the best of our knowledge, measured in terms of number of analyzed learners and datasets, this study is one of the largest studies on bias mitigation yet presented in the literature.
118 - Zining Zhu , Bai Li , Yang Xu 2021
As the numbers of submissions to conferences grow quickly, the task of assessing the quality of academic papers automatically, convincingly, and with high accuracy attracts increasing attention. We argue that studying interpretable dimensions of these submissions could lead to scalable solutions. We extract a collection of writing features, and construct a suite of prediction tasks to assess the usefulness of these features in predicting citation counts and the publication of AI-related papers. Depending on the venues, the writing features can predict the conference vs. workshop appearance with F1 scores up to 60-90, sometimes even outperforming the content-based tf-idf features and RoBERTa. We show that the features describe writing style more than content. To further understand the results, we estimate the causal impact of the most indicative features. Our analysis on writing features provides a perspective to assessing and refining the writing of academic articles at scale.
182 - Ananya Ganesh , Martha Palmer , 2021
Recent advances in natural language processing (NLP) have the ability to transform how classroom learning takes place. Combined with the increasing integration of technology in todays classrooms, NLP systems leveraging question answering and dialog processing techniques can serve as private tutors or participants in classroom discussions to increase student engagement and learning. To progress towards this goal, we use the classroom discourse framework of academically productive talk (APT) to learn strategies that make for the best learning experience. In this paper, we introduce a new task, called future talk move prediction (FTMP): it consists of predicting the next talk move -- an utterance strategy from APT -- given a conversation history with its corresponding talk moves. We further introduce a neural network model for this task, which outperforms multiple baselines by a large margin. Finally, we compare our models performance on FTMP to human performance and show several similarities between the two.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا