Do you want to publish a course? Click here

Nanoscale Non-Destructive Ferroelectric Characterization with Non-Contact Heterodyne Electrostrain Force Microscopy

118   0   0.0 ( 0 )
 Added by Kaiyang Zeng Dr.
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Perceiving nanoscale ferroelectric phenomena from real space is of great importance for elucidating underlying ferroelectric physics. During the past decades, nanoscale ferroelectric characterization has mainly relied on the Piezoresponse Force Microscopy (PFM), however, the fundamental limitations of PFM have made the nanoscale ferroelectric studies encounter significant bottlenecks. In this study, a high-resolution non-contact ferroelectric measurement, named Non-Contact Heterodyne Electrostrain Force Microscopy (NC-HEsFM), has been introduced firstly. It has been unambiguously demonstrated that NC-HEsFM can operate on multiple eigenmodes to perform ideal high-resolution ferroelectric domain mapping, standard ferroelectric hysteresis loop measurement and controllable domain manipulation. With using quartz tuning fork (QTF) sensor and heterodyne detection, NC-HEsFM shows an unprecedented capability in achieving real non-contact yet non-destructive ferroelectric characterization with negligible electrostatic force effect. It is believed that NC-HEsFM can be extensively used in various ferroelectric or piezoelectric studies with providing substantially improved characterization performance. Meanwhile, the QTF-based force detection makes NC-HEsFM highly compatible for high-vacuum and low-temperature environments, providing ideal conditions for achieving an ultra-high spatial resolution to investigate the most intrinsic ferroelectric phenomena.



rate research

Read More

The nondestructive imaging of subsurface structures on the nanometer scale has been a long-standing desire in both science and industry. A few impressive images were published so far that demonstrate the general feasibility by combining ultrasound with an Atomic Force Microscope. From different excitation schemes, Heterodyne Force Microscopy seems to be the most promising candidate delivering the highest contrast and resolution. However, the physical contrast mechanism is unknown, thereby preventing any quantitative analysis of samples. Here we show that friction at material boundaries within the sample is responsible for the contrast formation. This result is obtained by performing a full quantitative analysis, in which we compare our experimentally observed contrasts with simulations and calculations. Surprisingly, we can rule out all other generally believed responsible mechanisms, like Rayleigh scattering, sample (visco)elasticity, damping of the ultrasonic tip motion, and ultrasound attenuation. Our analytical description paves the way for quantitative SubSurface-AFM imaging.
In electron microscopy, charging of non-conductive biological samples by focused electron beams hinders their high-resolution imaging. Gold or platinum coatings have been commonly used to prevent such sample charging, but it disables further quantitative and qualitative chemical analyses by energy dispersive spectroscopy (EDS). Here we report that graphene-coating on biological samples enables non-destructive high-resolution imaging by scanning electron microscopy (SEM) as well as chemical analysis by EDS, utilizing graphenes transparency to electron beams, high conductivity, outstanding mechanical strength, and flexibility. We believe that the graphene-coated imaging and analysis would provide us a new opportunity to explore various biological phenomena unseen before due to the limitation in sample preparation and image resolution, which will broaden our understanding on the life mechanism of various living organisms.
We demonstrate a new method for non-destructive imaging of laser-cooled atoms. This spatial heterodyne technique forms a phase image by interfering a strong carrier laser beam with a weak probe beam that passes through the cold atom cloud. The figure of merit equals or exceeds that of phase-contrast imaging, and the technique can be used over a wider range of spatial scales. We show images of a dark spot MOT taken with imaging fluences as low as 61 pJ/cm^2 at a detuning of 11 linewidths, resulting in 0.0004 photons scattered per atom.
Epitaxial graphene grown on transition metal surfaces typically exhibits a moire pattern due to the lattice mismatch between graphene and the underlying metal surface. We use both scanning tunneling microscopy (STM) and atomic force microscopy (AFM) experiments to probe the electronic and topographic contrast of the graphene moire on the Ir(111) surface. While STM topography is influenced by the local density of states close to the Fermi energy and the local tunneling barrier height, AFM is capable of yielding the true surface topography once the background force arising from the van der Waals (vdW) interaction between the tip and the substrate is taken into account. We observe a moire corrugation of 35$pm$10 pm, where the graphene-Ir(111) distance is the smallest in the areas where the graphene honeycomb is atop the underlying iridium atoms and larger on the fcc or hcp threefold hollow sites.
103 - T. Jungk , A. Hoffmann , 2008
We present a full analysis of the contrast mechanisms for the detection of ferroelectric domains on all faces of bulk single crystals using scanning force microscopy exemplified on hexagonally poled lithium niobate. The domain contrast can be attributed to three different mechanisms: i) the thickness change of the sample due to an out-of-plane piezoelectric response (standard piezoresponse force microscopy), ii) the lateral displacement of the sample surface due to an in-plane piezoresponse, and iii) the electrostatic tip-sample interaction at the domain boundaries caused by surface charges on the crystallographic y- and z-faces. A careful analysis of the movement of the cantilever with respect to its orientation relative to the crystallographic axes of the sample allows a clear attribution of the observed domain contrast to the driving forces respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا