Do you want to publish a course? Click here

Cohomology of the moduli of Higgs bundles via positive characteristic

163   0   0.0 ( 0 )
 Added by Junliang Shen
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

For any two degrees coprime to the rank, we construct a family of ring isomorphisms parameterized by GSp(2g) between the cohomology of the moduli spaces of stable Higgs bundles which preserve the perverse filtrations. As consequences, we prove two structural results concerning the cohomology of Higgs moduli which are predicted by the P=W conjecture in non-abelian Hodge theory: (1) Galois conjugation for character varieties preserves the perverse filtrations for the corresponding Higgs moduli spaces. (2) The restriction of the Hodge-Tate decomposition for a character variety to each piece of the perverse filtration for the corresponding Higgs moduli space gives also a decomposition. Our proof uses reduction to positive characteristic and relies on the non-abelian Hodge correspondence in characteristic p between Dolbeault and de Rham moduli spaces.



rate research

Read More

In this article, we solve the problem of constructing moduli spaces of semistable principal bundles (and singul
The moduli space of stable vector bundles on a Riemann surface is smooth when the rank and degree are coprime, and is diffeomorphic to the space of unitary connections of central constant curvature. A classic result of Newstead and Atiyah-Bott asserts that its rational cohomology ring is generated by the universal classes, that is, by the Kunneth components of the Chern classes of the universal bundle. This paper studies the larger, non-compact moduli space of Higgs bundles, as introduced by Hitchin and Simpson, with values in the canonical bundle K. This is diffeomorphic to the space of all connections of central constant curvature, whether unitary or not. The main result of the paper is that, in the rank 2 case, the rational cohomology ring of this space is again generated by universal classes. The spaces of Higgs bundles with values in K(n) for n > 0 turn out to be essential to the story. Indeed, we show that their direct limit has the homotopy type of the classifying space of the gauge group, and hence has cohomology generated by universal classes. A companion paper treats the problem of finding relations between these generators in the rank 2 case.
The moduli space of stable bundles of rank 2 and degree 1 on a Riemann surface has rational cohomology generated by the so-called universal classes. The work of Baranovsky, King-Newstead, Siebert-Tian and Zagier provided a complete set of relations between these classes, expressed in terms of a recursion in the genus. This paper accomplishes the same thing for the non-compact moduli spaces of Higgs bundles, in the sense of Hitchin and Simpson. There are many more independent relations than for stable bundles, but in a sense the answer is simpler, since the formulas are completely explicit, not recursive. The results of Kirwan on equivariant cohomology for holomorphic circle actions are of key importance. Together, Parts I and II describe the cohomology rings of spaces of rank 2 Higgs bundles at essentially the same level of detail as is known for stable bundles.
183 - Camilla Felisetti 2018
Let $C$ be a smooth projective curve of genus $2$. Following a method by O Grady, we construct a semismall desingularization $tilde{mathcal{M}}_{Dol}^G$ of the moduli space $mathcal{M}_{Dol}^G$ of semistable $G$-Higgs bundles of degree 0 for $G=GL(2,mathbb{C}), SL(2,mathbb{C})$. By the decomposition theorem by Beilinson, Bernstein, Deligne one can write the cohomology of $tilde{mathcal{M}}_{Dol}^G$ as a direct sum of the intersection cohomology of $mathcal{M}_{Dol}^G$ plus other summands supported on the singular locus. We use this splitting to compute the intersection cohomology of $mathcal{M}_{Dol}^G$ and prove that the mixed Hodge structure on it is actually pure, in analogy with what happens to ordinary cohomology in the smooth case of coprime rank and degree.
We explore the cohomological structure for the (possibly singular) moduli of $mathrm{SL}_n$-Higgs bundles for arbitrary degree on a genus g curve with respect to an effective divisor of degree >2g-2. We prove a support theorem for the $mathrm{SL}_n$-Hitchin fibration extending de Cataldos support theorem in the nonsingular case, and a version of the Hausel-Thaddeus topological mirror symmetry conjecture for intersection cohomology. This implies a generalization of the Harder-Narasimhan theorem concerning semistable vector bundles for any degree. Our main tool is an Ng^{o}-type support inequality established recently which works for possibly singular ambient spaces and intersection cohomology complexes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا