Do you want to publish a course? Click here

Massive Black Hole Binaries and Where to Find Them with Dual Detector Networks

73   0   0.0 ( 0 )
 Added by Neil J. Cornish
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A single space-based gravitational wave detector will push the boundaries of astronomy and fundamental physics. Having a network of two or more detectors would significantly improve source localization. Here we consider how dual networks of space-based detectors would improve parameter estimation of massive black hole binaries. We consider two scenarios: a network comprised of the Laser Interferometer Space Antenna (LISA) and an additional LISA-like heliocentric detector (e.g. Taiji); and a network comprised of LISA with an an additional geocentric detector (e.g. TianQin). We use Markov chain Monte Carlo techniques and Fisher matrix estimates to explore the impact of a two detector network on sky localization and distance determination. The impact on other source parameters is also studied. With the addition of a Taiji or TianQin, we find orders of magnitude improvements in sky localization for the more massive MBHBs, while also seeing improvements for lower mass systems, and for other source parameters.



rate research

Read More

75 - John Antoniadis 2020
While the majority of massive stars have a stellar companion, most pulsars appear to be isolated. Taken at face value, this suggests that most massive binaries break apart due to strong natal kicks received in supernova explosions. However, the observed binary fraction can still be subject to strong selection effects, as monitoring of newly discovered pulsars is rarely carried out for long enough to conclusively rule out multiplicity. Here, we use the second Gaia Data Release (DR2) to search for companions to 1534 rotation-powered pulsars with positions known to better than 0.5 arcseconds. We find 22 matches to known pulsars, including one not reported elsewhere, and 8 new possible companions to young pulsars. We examine the photometric and kinematic properties of these systems and provide empirical relations for identifying Gaia sources with potential millisecond pulsar companions. Our results confirm that the observed multiplicity fraction is small. However, we show that the number of binaries below the sensitivity of Gaia and radio timing in our sample could still be significantly higher. We constrain the binary fraction of young pulsars to be $f_{rm young}^{rm true}leq 5.3(8.3)%$ under realistic(conservative) assumptions for the binary properties and current sensitivity thresholds. For massive stars ($geq 10$ M$_{odot}$) in particular, we find $f_{rm OB}^{rm true}leq 3.7%$ which sets a firm independent upper limit on the galactic neutron-star merger rate, $leq 7.2times 10^{-4}$ yr$^{-1}$. Ongoing and future projects such as the CHIME/pulsar program, MeerTime, HIRAX and ultimately the SKA, will significantly improve these constraints in the future.
Generalization of deep networks has been of great interest in recent years, resulting in a number of theoretically and empirically motivated complexity measures. However, most papers proposing such measures study only a small set of models, leaving open the question of whether the conclusion drawn from those experiments would remain valid in other settings. We present the first large scale study of generalization in deep networks. We investigate more then 40 complexity measures taken from both theoretical bounds and empirical studies. We train over 10,000 convolutional networks by systematically varying commonly used hyperparameters. Hoping to uncover potentially causal relationships between each measure and generalization, we analyze carefully controlled experiments and show surprising failures of some measures as well as promising measures for further research.
[Abridged] We introduce an improved version of the Eccentric, Non-spinning, Inspiral-Gaussian-process Merger Approximant (ENIGMA) waveform model. We find that this ready-to-use model can: (i) produce physically consistent signals when sampling over 1M samples chosen over the $m_{{1,,2}}in[5M_{odot},,50M_{odot}]$ parameter space, and the entire range of binary inclination angles; (ii) produce waveforms within 0.04 seconds from an initial gravitational wave frequency $f_{textrm{GW}} =15,textrm{Hz}$ and at a sample rate of 8192 Hz; and (iii) reproduce the physics of quasi-circular mergers. We utilize ENIGMA to compute the expected signal-to-noise ratio (SNR) distributions of eccentric binary black hole mergers assuming the existence of second and third generation gravitational wave detector networks that include the twin LIGO detectors, Virgo, KAGRA, LIGO-India, a LIGO-type detector in Australia, Cosmic Explorer, and the Einstein Telescope. In the context of advanced LIGO-type detectors, we find that the SNR of eccentric mergers is always larger than quasi-circular mergers for systems with $e_0leq0.4$ at $f_{textrm{GW}} =10,textrm{Hz}$, even if the timespan of eccentric signals is just a third of quasi-circular systems with identical total mass and mass-ratio. For Cosmic Explorer-type detector networks, we find that eccentric mergers have similar SNRs than quasi-circular systems for $e_0leq0.3$ at $f_{textrm{GW}} =10,textrm{Hz}$. Systems with $e_0sim0.5$ at $f_{textrm{GW}} =10,textrm{Hz}$ have SNRs that range between 50%-90% of the SNR produced by quasi-circular mergers, even if these eccentric signals are just between a third to a tenth the length of quasi-circular systems. For Einstein Telescope-type detectors, we find that eccentric mergers have similar SNRs than quasi-circular systems for $e_0leq0.4$ at $f_{textrm{GW}} =5,textrm{Hz}$.
We show that light scalars can form quasibound states around binaries. In the nonrelativistic regime, these states are formally described by the quantum-mechanical Schrodinger equation for a one-electron heteronuclear diatomic molecule. We performed extensive numerical simulations of scalar fields around black hole binaries showing that a scalar structure condenses around the binary -- we dub these states gravitational molecules. We further show that these are well described by the perturbative, nonrelativistic description.
83 - John Antoniadis 2020
The Early Gaia Data Release 3 (EDR3) provides precise astrometry for nearly 1.5 billion sources across the entire sky. A few tens of these are associated with neutron stars in the Milky Way and Magellanic Clouds. Here, we report on a search for EDR3 counterparts to known rotation-powered pulsars using the method outlined in Antoniadis (2021). A cross-correlation between EDR3 and the ATNF pulsar catalogue identifies 41 close astrometric pairs ($< 0.5$ arcsec at the reference epoch of the pulsar position). Twenty six of these are related to previously-known optical counterparts, while the rest are candidate pairs that require further follow-up. Highlights include the Crab Pulsar (PSR B0531+21), for which EDR3 yields a distance of $2.08^{+0.78}_{-0.45}$ kpc (or $2.00_{-0.38}^{+0.56}$ kpc taking into account the dispersion-measure prior; errors indicate 95% confidence limits) and PSR J1638-4608, a pulsar thus-far considered to be isolated that lies within 0.056 arcsec of a Gaia source.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا