Do you want to publish a course? Click here

Probing Robust Majorana Signatures by Crossed Andreev Reflection with a Quantum Dot

84   0   0.0 ( 0 )
 Added by Hong-Hao Zhang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a three-terminal structure to probe robust signatures of Majorana zero modes consisting of a quantum dot coupled to the normal metal, s-wave superconducting and Majorana Y-junction leads. The zero-bias differential conductance at zero temperature of the normal-metal lead peaks at $2e^{2}/h$, which will be deflected after Majorana braiding. We find that the effect of thermal broadening is significantly suppressed when the dot is on resonance. In the case that the energy level of the quantum dot is much larger than the superconducting gap, tunneling processes are dominated by Majorana-induced crossed Andreev reflection. Particularly, a novel kind of crossed Andreev reflection equivalent to the splitting of charge quanta $3e$ occurs after Majorana braiding.



rate research

Read More

We propose a scheme to detect the Majorana-zero-mode-induced crossed Andreev reflection by measuring tunneling current directly. In this scheme a metallic ring structure is utilized to separate electron and hole signals. Since tunneling electrons and holes have different propagating wave vectors, the conditions for them to be constructively coherent in the ring differ. We find that when the magnetic flux threading the ring varies, it is possible to observe adjacent positive and negative current peaks of almost equal amplitudes.
We show experimentally that in nanometer scaled superconductor/normal metal hybrid devices and in a small window of contact resistances, crossed Andreev reflection (CAR) can dominate the nonlocal transport for all energies below the superconducting gap. Besides CAR, elastic cotunneling (EC) and nonlocal charge imbalance (CI) can be identified as competing subgap transport mechanisms in temperature dependent four-terminal nonlocal measurements. We demonstrate a systematic change of the nonlocal resistance vs. bias characteristics with increasing contact resistances, which can be varied in the fabrication process. For samples with higher contact resistances, CAR is weakened relative to EC in the midgap regime, possibly due to dynamical Coulomb blockade. Gaining control of CAR is an important step towards the realization of a solid state entangler.
We study superconducting quantum interference in InSb flake Josephson junctions. An even-odd effect in the amplitude and periodicity of the superconducting quantum interference pattern is found. Interestingly, the occurrence of this pattern coincides with enhanced conduction at both edges of the flake, as is deduced from measuring a SQUID pattern at reduced gate voltages. We identify the specific crystal facet of the edge with enhanced conduction, and confirm this by measuring multiple devices. Furthermore, we argue the even-odd effect is due to crossed Andreev reflection, a process where a Cooper pair splits up over the two edges and recombines at the opposite contact. An entirely $h/e$ periodic SQUID pattern, as well as the observation of both even-odd and odd-even effects, corroborates this conclusion. Crossed Andreev reflection could be harnessed for creating a topological state of matter or performing experiments on the non-local spin-entanglement of spatially separated Cooper pairs.
We numerically study crossed Andreev reflection (CAR) in a topological insulator nanowire T-junction where one lead is proximitized by a superconductor. We perform realistic simulations based on the 3D BHZ model and compare the results with those from an effective 2D surface model, whose computational cost is much lower. Both approaches show that CAR should be clearly observable in a wide parameter range, including perfect CAR in a somewhat more restricted range. Furthermore, it can be controlled by a magnetic field and is robust to disorder. Our effective 2D implementation allows to model systems of micronsize, typical of experimental setups, but computationally too heavy for 3D models.
One of the most promising approaches of generating spin- and energy-entangled electron pairs is splitting a Cooper pair into the metal through spatially separated terminals. Utilizing hybrid systems with the energy-dependent barriers at the superconductor-normal metal interfaces, one can achieve practically 100% efficiency outcome of entangled electrons. We investigate minimalistic one-dimensional model comprising a superconductor and two metallic leads and derive an expression for an electron-to-hole transmission probability as a measure of splitting efficiency. We find the conditions for achieving 100% efficiency and present analytical results for the differential conductance and differential noise.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا