Do you want to publish a course? Click here

Whats in the Box? A Preliminary Analysis of Undesirable Content in the Common Crawl Corpus

83   0   0.0 ( 0 )
 Added by Joseph Viviano
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Whereas much of the success of the current generation of neural language models has been driven by increasingly large training corpora, relatively little research has been dedicated to analyzing these massive sources of textual data. In this exploratory analysis, we delve deeper into the Common Crawl, a colossal web corpus that is extensively used for training language models. We find that it contains a significant amount of undesirable content, including hate speech and sexually explicit content, even after filtering procedures. We discuss the potential impacts of this content on language models and conclude with future research directions and a more mindful approach to corpus collection and analysis.



rate research

Read More

Norway has a large amount of dialectal variation, as well as a general tolerance to its use in the public sphere. There are, however, few available resources to study this variation and its change over time and in more informal areas, eg on social media. In this paper, we propose a first step to creating a corpus of dialectal variation of written Norwegian. We collect a small corpus of tweets and manually annotate them as Bokm{aa}l, Nynorsk, any dialect, or a mix. We further perform preliminary experiments with state-of-the-art models, as well as an analysis of the data to expand this corpus in the future. Finally, we make the annotations and models available for future work.
This work describes an automatic news chatbot that draws content from a diverse set of news articles and creates conversations with a user about the news. Key components of the system include the automatic organization of news articles into topical chatrooms, integration of automatically generated questions into the conversation, and a novel method for choosing which questions to present which avoids repetitive suggestions. We describe the algorithmic framework and present the results of a usability study that shows that news readers using the system successfully engage in multi-turn conversations about specific news stories.
We demonstrate that, hidden within one-layer randomly weighted neural networks, there exist subnetworks that can achieve impressive performance, without ever modifying the weight initializations, on machine translation tasks. To find subnetworks for one-layer randomly weighted neural networks, we apply different binary masks to the same weight matrix to generate different layers. Hidden within a one-layer randomly weighted Transformer, we find that subnetworks that can achieve 29.45/17.29 BLEU on IWSLT14/WMT14. Using a fixed pre-trained embedding layer, the previously found subnetworks are smaller than, but can match 98%/92% (34.14/25.24 BLEU) of the performance of, a trained Transformer small/base on IWSLT14/WMT14. Furthermore, we demonstrate the effectiveness of larger and deeper transformers in this setting, as well as the impact of different initialization methods. We released the source code at https://github.com/sIncerass/one_layer_lottery_ticket.
Machine learning models are now widely deployed in real-world applications. However, the existence of adversarial examples has been long considered a real threat to such models. While numerous defenses aiming to improve the robustness have been proposed, many have been shown ineffective. As these vulnerabilities are still nowhere near being eliminated, we propose an alternative deployment-based defense paradigm that goes beyond the traditional white-box and black-box threat models. Instead of training a single partially-robust model, one could train a set of same-functionality, yet, adversarially-disjoint models with minimal in-between attack transferability. These models could then be randomly and individually deployed, such that accessing one of them minimally affects the others. Our experiments on CIFAR-10 and a wide range of attacks show that we achieve a significantly lower attack transferability across our disjoint models compared to a baseline of ensemble diversity. In addition, compared to an adversarially trained set, we achieve a higher average robust accuracy while maintaining the accuracy of clean examples.
103 - Sin-Han Kang , Hong-Gyu Jung , 2019
In an effort to interpret black-box models, researches for developing explanation methods have proceeded in recent years. Most studies have tried to identify input pixels that are crucial to the prediction of a classifier. While this approach is meaningful to analyse the characteristic of blackbox models, it is also important to investigate pixels that interfere with the prediction. To tackle this issue, in this paper, we propose an explanation method that visualizes undesirable regions to classify an image as a target class. To be specific, we divide the concept of undesirable regions into two terms: (1) factors for a target class, which hinder that black-box models identify intrinsic characteristics of a target class and (2) factors for non-target classes that are important regions for an image to be classified as other classes. We visualize such undesirable regions on heatmaps to qualitatively validate the proposed method. Furthermore, we present an evaluation metric to provide quantitative results on ImageNet.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا