Do you want to publish a course? Click here

De Finettis Theorem in Categorical Probability

77   0   0.0 ( 0 )
 Added by Tobias Fritz
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present a novel proof of de Finettis Theorem characterizing permutation-invariant probability measures of infinite sequences of variables, so-called exchangeable measures. The proof is phrased in the language of Markov categories, which provide an abstract categorical framework for probability and information flow. The diagrammatic and abstract nature of the arguments makes the proof intuitive and easy to follow. We also show how the usual measure-theoretic version of de Finettis Theorem for standard Borel spaces is an instance of this result.



rate research

Read More

85 - Werner Kirsch 2018
A sequence of random variables is called exchangeable if the joint distribution of the sequence is unchanged by any permutation of the indices. De Finettis theorem characterizes all ${0,1}$-valued exchangeable sequences as a mixture of sequences of independent random variables. We present an new, elementary proof of de Finettis Theorem. The purpose of this paper is to make this theorem accessible to a broader community through an essentially self-contained proof.
Markov categories are a recent categorical approach to the mathematical foundations of probability and statistics. Here, this approach is advanced by stating and proving equivalent conditions for second-order stochastic dominance, a widely used way of comparing probability distributions by their spread. Furthermore, we lay foundation for the theory of comparing statistical experiments within Markov categories by stating and proving the classical Blackwell-Sherman-Stein Theorem. Our version not only offers new insight into the proof, but its abstract nature also makes the result more general, automatically specializing to the standard Blackwell-Sherman-Stein Theorem in measure-theoretic probability as well as a Bayesian version that involves prior-dependent garbling. Along the way, we define and characterize representable Markov categories, within which one can talk about Markov kernels to or from spaces of distributions. We do so by exploring the relation between Markov categories and Kleisli categories of probability monads.
119 - Bart Jacobs , Sam Staton 2020
This paper reformulates a classical result in probability theory from the 1930s in modern categorical terms: de Finettis representation theorem is redescribed as limit statement for a chain of finite spaces in the Kleisli category of the Giry monad. This new limit is used to identify among exchangeable coalgebras the final one.
We give a conceptual treatment of the notion of joints, marginals, and independence in the setting of categorical probability. This is achieved by endowing the usual probability monads (like the Giry monad) with a monoidal and an opmonoidal structure, mutually compatible (i.e. a bimonoidal structure). If the underlying monoidal category is cartesian monoidal, a bimonoidal structure is given uniquely by a commutative strength. However, if the underlying monoidal category is not cartesian monoidal, a strength is not enough to guarantee all the desired properties of joints and marginals. A bimonoidal structure is then the correct requirement for the more general case. We explain the theory and the operational interpretation, with the help of the graphical calculus for monoidal categories. We give a definition of stochastic independence based on the bimonoidal structure, compatible with the intuition and with other approaches in the literature for cartesian monoidal categories. We then show as an example that the Kantorovich monad on the category of complete metric spaces is a bimonoidal monad for a non-cartesian monoidal structure.
We define and study a probability monad on the category of complete metric spaces and short maps. It assigns to each space the space of Radon probability measures on it with finite first moment, equipped with the Kantorovich-Wasserstein distance. This monad is analogous to the Giry monad on the category of Polish spaces, and it extends a construction due to van Breugel for compact and for 1-bounded complete metric spaces. We prove that this Kantorovich monad arises from a colimit construction on finite power-like constructions, which formalizes the intuition that probability measures are limits of finite samples. The proof relies on a criterion for when an ordinary left Kan extension of lax monoidal functors is a monoidal Kan extension. The colimit characterization allows the development of integration theory and the treatment of measures on spaces of measures, without measure theory. We also show that the category of algebras of the Kantorovich monad is equivalent to the category of closed convex subsets of Banach spaces with short affine maps as morphisms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا