Do you want to publish a course? Click here

Heavy quark dynamics in a strongly magnetized quark-gluon plasma

149   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We present a calculation of the heavy quark transport coefficients in a quark-gluon plasma under the presence of a strong external magnetic field, within the Lowest Landau Level (LLL) approximation. In particular, we apply the Hard Thermal Loop (HTL) technique for the resummed effective gluon propagator, generalized for a hot and magnetized medium. Using the derived effective HTL gluon propagator and the LLL quark propagator we analytically derive the full results for the longitudinal and transverse momentum diffusion coefficients as well as the energy losses for charm and bottom quarks beyond the static limit. We also show numerical results for these coefficients in two special cases where the heavy quark is moving either parallel or perpendicular to the external magnetic field.

rate research

Read More

We derive equations for the time evolution of the reduced density matrix of a collection of heavy quarks and antiquarks immersed in a quark gluon plasma. These equations, in their original form, rely on two approximations: the weak coupling between the heavy quarks and the plasma, the fast response of the plasma to the perturbation caused by the heavy quarks. An additional semi-classical approximation is performed. This allows us to recover results previously obtained for the abelian plasma using the influence functional formalism. In the case of QCD, specific features of the color dynamics make the implementation of the semi-classical approximation more involved. We explore two approximate strategies to solve numerically the resulting equations in the case of a quark-antiquark pair. One involves Langevin equations with additional random color forces, the other treats the transition between the singlet and octet color configurations as collisions in a Boltzmann equation which can be solved with Monte Carlo techniques.
We evaluate heavy-quark (HQ) transport properties in a Quark-Gluon Plasma (QGP) employing interaction potentials extracted from thermal lattice QCD. Within a Brueckner many-body scheme we calculate in-medium T-matrices for charm- and bottom-quark scattering off light quarks in the QGP. The interactions are dominated by attractive meson and diquark channels which support bound and resonance states up to temperatures of ~1.5 T_c. We apply pertinent drag and diffusion coefficients (supplemented by perturbative scattering off gluons) in Langevin simulations in an expanding fireball to compute HQ spectra and elliptic flow in sqrt{s_{NN}}=200 GeV Au-Au collisions. We find good agreement with semileptonic electron-decay spectra which supports our nonperturbative computation of the HQ diffusion coefficient, suggestive for a strongly coupled QGP.
232 - Salah Hamieh 2000
Lattice-QCD results provide an opportunity to model, and extrapolate to finite baryon density, the properties of the quark-gluon plasma (QGP). Upon fixing the scale of the thermal coupling constant and vacuum energy to the lattice data, the properties of resulting QGP equations of state (EoS) are developed. We show that the physical properties of the dense matter fireball formed in heavy ion collision experiments at CERN-SPS are well described by the QGP-EoS we presented. We also estimate the properties of the fireball formed in early stages of nuclear collision, and argue that QGP formation must be expected down to 40A GeV in central Pb--Pb interactions.
In this paper, we calculate the soft-collisional energy loss of heavy quarks traversing the viscous quark-gluon plasma including the effects of a finite relaxation time $tau_pi$ on the energy loss. We find that the collisional energy loss depends appreciably on $tau_pi$ . In particular, for typical values of the viscosity-to-entropy ratio, we show that the energy loss obtained using $tau_pi$ = 0 can be $sim$ 10$%$ larger than the one obtained using $tau_pi$ = 0. Moreover, we find that the energy loss obtained using the kinetic theory expression for $tau_pi$ is much larger that the one obtained with the $tau_pi$ derived from the Anti de Sitter/Conformal Field Theory correspondence. Our results may be relevant in the modeling of heavy quark evolution through the quark-gluon plasma.
Wakes created by a parton moving through a static and infinitely extended quark-gluon plasma are considered. In contrast to former investigations collisions within the quark-gluon plasma are taken into account using a transport theoretical approach (Boltzmann equation) with a Bhatnagar-Gross-Krook collision term. Within this model it is shown that the wake structure changes significantly compared to the collisionless case.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا