No Arabic abstract
Recently developed concept of dissipative measure-valued solution for compressible flows is a suitable tool to describe oscillations and singularities possibly developed in solutions of multidimensional Euler equations. In this paper we study the convergence of the first-order finite volume method based on the exact Riemann solver for the complete compressible Euler equations. Specifically, we derive entropy inequality and prove the consistency of numerical method. Passing to the limit, we show the weak and strong convergence of numerical solutions and identify their limit. The numerical results presented for the spiral, Kelvin-Helmholtz and the Richtmyer-Meshkov problem are consistent with our theoretical analysis.
In this work we design a new domain decomposition method for the Euler equations in 2 dimensions. The basis is the equivalence via the Smith factorization with a third order scalar equation to whom we can apply an algorithm inspired from the Robin-Robin preconditioner for the convection-diffusion equation. Afterwards we translate it into an algorithm for the initial system and prove that at the continuous level and for a decomposition into 2 sub-domains, it converges in 2 iterations. This property cannot be preserved strictly at discrete level and for arbitrary domain decompositions but we still have numerical results which confirm a very good stability with respect to the various parameters of the problem (mesh size, Mach number, ....).
The Riemann problem, and the associated generalized Riemann problem, are increasingly seen as the important building blocks for modern higher order Godunov-type schemes. In the past, building a generalized Riemann problem solver was seen as an intricately mathematical task for complicated physical or engineering problems because the associated Riemann problem is different for each hyperbolic system of interest. This paper changes that situation. The HLLI Riemann solver is a recently-proposed Riemann solver that is universal in that it is applicable to any hyperbolic system, whether in conservation form or with non-conservative products. The HLLI Riemann solver is also complete in the sense that if it is given a complete set of eigenvectors, it represents all waves with minimal dissipation. It is, therefore, very attractive to build a generalized Riemann problem solver version of the HLLI Riemann solver. This is the task that is accomplished in the present paper. We show that at second order, the generalized Riemann problem version of the HLLI Riemann solver is easy to design. Our GRP solver is also complete and universal because it inherits those good properties from original HLLI Riemann solver. We also show how our GRP solver can be adapted to the solution of hyperbolic systems with stiff source terms. Our generalized HLLI Riemann solver is easy to implement and performs robustly and well over a range of test problems. All implementation-related details are presented. Results from several stringent test problems are shown. These test problems are drawn from many different hyperbolic systems, and include hyperbolic systems in conservation form; with non-conservative products; and with stiff source terms. The present generalized Riemann problem solver performs well on all of them.
In this paper, an energy-based discontinuous Galerkin method for dynamic Euler-Bernoulli beam equations is developed. The resulting method is energy-dissipating or energy-conserving depending on the simple, mesh-independent choice of numerical fluxes. By introducing a velocity field, the original problem is transformed into a first-order in time system. In our formulation, the discontinuous Galerkin approximations for the original displacement field and the auxiliary velocity field are not restricted to be in the same space. In particular, a given accuracy can be achieved with the fewest degrees of freedom when the degree for the approximation space of the velocity field is two orders lower than the degree of approximation space for the displacement field. In addition, we establish the error estimates in an energy norm and demonstrate the corresponding optimal convergence in numerical experiments.
Flows in which the primary features of interest do not rely on high-frequency acoustic effects, but in which long-wavelength acoustics play a nontrivial role, present a computational challenge. Integrating the entire domain with low-Mach-number methods would remove all acoustic wave propagation, while integrating the entire domain with the fully compressible equations can in some cases be prohibitively expensive due to the CFL time step constraint. For example, simulation of thermoacoustic instabilities might require fine resolution of the fluid/chemistry interaction but not require fine resolution of acoustic effects, yet one does not want to neglect the long-wavelength wave propagation and its interaction with the larger domain. The present paper introduces a new multi-level hybrid algorithm to address these types of phenomena. In this new approach, the fully compressible Euler equations are solved on the entire domain, potentially with local refinement, while their low-Mach-number counterparts are solved on subregions of the domain with higher spatial resolution. The finest of the compressible levels communicates inhomogeneous divergence constraints to the coarsest of the low-Mach-number levels, allowing the low-Mach-number levels to retain the long-wavelength acoustics. The performance of the hybrid method is shown for a series of test cases, including results from a simulation of the aeroacoustic propagation generated from a Kelvin-Helmholtz instability in low-Mach-number mixing layers. It is demonstrated that compared to a purely compressible approach, the hybrid method allows time-steps two orders of magnitude larger at the finest level, leading to an overall reduction of the computational time by a factor of 8.
We propose an efficient semi-Lagrangian Characteristic Mapping (CM) method for solving the three-dimensional (3D) incompressible Euler equations. This method evolves advected quantities by discretizing the flow map associated with the velocity field. Using the properties of the Lie group of volume preserving diffeomorphisms SDiff, long-time deformations are computed from a composition of short-time submaps which can be accurately evolved on coarse grids. This method is a fundamental extension to the CM method for two-dimensional incompressible Euler equations [51]. We take a geometric approach in the 3D case where the vorticity is not a scalar advected quantity, but can be computed as a differential 2-form through the pullback of the initial condition by the characteristic map. This formulation is based on the Kelvin circulation theorem and gives point-wise a Lagrangian description of the vorticity field. We demonstrate through numerical experiments the validity of the method and show that energy is not dissipated through artificial viscosity and small scales of the solution are preserved. We provide error estimates and numerical convergence tests showing that the method is globally third-order accurate.