No Arabic abstract
Chemical abundance determinations in Low-Ionization Nuclear Line Regions (LINERs) are especially complex and uncertain because the nature of the ionizing source of this kind of object is unknown. In this work, we study the oxygen abundance in relation to the hydrogen abundance (O/H) of the gas phase of the UGC4805 LINER nucleus. Optical spectroscopic data from the Mapping Nearby Galaxies (MaNGA) survey was employed to derive the O/H abundance of the UGC4805 nucleus based on the extrapolation of the disk abundance gradient, on calibrations between O/H abundance and strong emission-lines for Active Galactic Nuclei (AGNs) as well as on photoionization models built with the Cloudy code, assuming gas accretion into a black hole (AGN) and post-Asymptotic Giant Branch (p-AGB) stars with different effective temperatures. We found that abundance gradient extrapolations, AGN calibrations, AGN and p-AGB photoionization models produce similar O/H values for the UGC4805 nucleus and similar ionization parameter values. The study demonstrated that the methods used to estimate the O/H abundance using nuclear emission-line ratios produce reliable results, which are in agreement with the O/H values obtained from the independent method of galactic metallicity gradient extrapolation. Finally, the results from the WHAN diagram combined with the fact that the high excitation level of the gas has to be maintained at kpc scales, we suggest that the main ionizing source of the UGC4805 nucleus probably has a stellar origin rather than an AGN.
We study the gas phase metallicity (O/H) and nitrogen abundance gradients traced by star forming regions in a representative sample of 550 nearby galaxies in the stellar mass range $rm 10^9-10^{11.5} M_odot$ with resolved spectroscopic data from the SDSS-IV MaNGA survey. Using strong-line ratio diagnostics (R23 and O3N2 for metallicity and N2O2 for N/O) and referencing to the effective (half-light) radius ($rm R_e$), we find that the metallicity gradient steepens with stellar mass, lying roughly flat among galaxies with $rm log(M_star/M_odot) = 9.0$ but exhibiting slopes as steep as -0.14 dex $rm R_e^{-1}$ at $rm log(M_star/M_odot) = 10.5$ (using R23, but equivalent results are obtained using O3N2). At higher masses, these slopes remain typical in the outer regions of our sample ($rm R > 1.5 ~R_e$), but a flattening is observed in the central regions ($rm R < 1~ R_e$). In the outer regions ($rm R > 2.0 ~R_e$) we detect a mild flattening of the metallicity gradient in stacked profiles, although with low significance. The N/O ratio gradient provides complementary constraints on the average chemical enrichment history. Unlike the oxygen abundance, the average N/O profiles do not flatten out in the central regions of massive galaxies. The metallicity and N/O profiles both depart significantly from an exponential form, suggesting a disconnect between chemical enrichment and stellar mass surface density on local scales. In the context of inside-out growth of discs, our findings suggest that central regions of massive galaxies today have evolved to an equilibrium metallicity, while the nitrogen abundance continues to increase as a consequence of delayed secondary nucleosynthetic production.
We have identified 105 galaxy pairs at z ~ 0.04 with the MaNGA integral-field spectroscopic data. The pairs have projected separations between 1 kpc and 30 kpc, and are selected to have radial velocity offsets less than 600 km/s and stellar mass ratio between 0.1 and 1. The pair fraction increases with both the physical size of the integral-field unit and the stellar mass, consistent with theoretical expectations. We provide the best-fit analytical function of the pair fraction and find that ~3% of M* galaxies are in close pairs. For both isolated galaxies and paired galaxies, active galactic nuclei (AGN) are selected using emission-line ratios and H_alpha equivalent widths measured inside apertures at a fixed physical size. We find AGNs in ~24% of the paired galaxies and binary AGNs in ~13% of the pairs. To account for the selection biases in both the pair sample and the MaNGA sample, we compare the AGN comoving volume densities with those expected from the mass- and redshift-dependent AGN fractions. We find a strong (~5x) excess of binary AGNs over random pairing and a mild (~20%) deficit of single AGNs. The binary AGN excess increases from ~2x to ~6x as the projected separation decreases from 10-30 kpc to 1-10 kpc. Our results indicate that pairing of galaxies preserves the AGN duty cycle in individual galaxies but increases the population of binary AGNs through correlated activities. We suggest tidally-induced galactic-scale shocks and AGN cross-ionization as two plausible channels to produce low-luminosity narrow-line-selected binary AGNs.
Galaxy interaction is considered a key driver of galaxy evolution and star formation (SF) history. In this paper, we present an empirical picture of the radial extent of interaction-triggered SF along the merger sequence. The samples under study are drawn from the integral field spectroscopy (IFS) survey SDSS-IV MaNGA, including 205 star-forming galaxies in pairs/mergers and ~1350 control galaxies. For each galaxy in pairs, the merger stage is identified according to its morphological signatures: incoming phase, at first pericenter passage, at apocenter, in merging phase, and in final coalescence. The effect of interactions is quantified by the global and spatially resolved SF rate relative to the SF rate of a control sample selected for each individual galaxy ($Delta$logSFR and $Delta$logsSFR(r), respectively). Analysis of the radial $Delta$logsSFR(r) distributions shows that galaxy interactions have no significant impact on the $Delta$logsSFR(r) during the incoming phase. Right after the first pericenter passage, the radial $Delta$logsSFR(r) profile decreases steeply from enhanced to suppressed activity for increasing galactocentric radius. Later on, SF is enhanced on a broad spatial scale out to the maximum radius we explore (~6.7 kpc) and the enhancement is in general centrally peaked. The extended SF enhancement is also observed for systems at their apocenters and in the coalescence phase, suggesting that interaction-triggered SF is not restricted to the central region of a galaxy. Further explorations of a wide range in parameter space of merger configurations (e.g., mass ratio) are required to constrain the whole picture of interaction-triggered SF.
We study the internal radial gradients of stellar population properties within $1.5;R_{rm e}$ and analyse the impact of galaxy environment. We use a representative sample of 721 galaxies with masses ranging between $10^{9};M_{odot}$ to $10^{11.5};M_{odot}$ from the SDSS-IV survey MaNGA. We split this sample by morphology into early-type and late-type galaxies. Using the full spectral fitting code FIREFLY, we derive the light and mass-weighted stellar population properties age and metallicity, and calculate the gradients of these properties. We use three independent methods to quantify galaxy environment, namely the $N^{th}$ nearest neighbour, the tidal strength parameter $Q$ and distinguish between central and satellite galaxies. In our analysis, we find that early-type galaxies generally exhibit shallow light-weighted age gradients in agreement with the literature and mass-weighted median age gradients tend to be slightly positive. Late-type galaxies, instead, have negative light-weighted age gradients. We detect negative metallicity gradients in both early and late-type galaxies that correlate with galaxy mass, with the gradients being steeper and the correlation with mass being stronger in late-types. We find, however, that stellar population gradients, for both morphological classifications, have no significant correlation with galaxy environment for all three characterisations of environment. Our results suggest that galaxy mass is the main driver of stellar population gradients in both early and late-type galaxies, and any environmental dependence, if present at all, must be very subtle.
Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) is acquiring integral-field spectroscopy for the largest sample of galaxies to date. By 2020, the MaNGA Survey --- one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) --- will have observed a statistically representative sample of 10$^4$ galaxies in the local Universe ($zlesssim0.15$). In addition to a robust data-reduction pipeline (DRP), MaNGA has developed a data-analysis pipeline (DAP) that provides higher-level data products. To accompany the first public release of its code base and data products, we provide an overview of the MaNGA DAP, including its software design, workflow, measurement procedures and algorithms, performance, and output data model. In conjunction with our companion paper Belfiore et al., we also assess the DAP output provided for 4718 observations of 4648 unique galaxies in the recent SDSS Data Release 15 (DR15). These analysis products focus on measurements that are close to the data and require minimal model-based assumptions. Namely, we provide stellar kinematics (velocity and velocity dispersion), emission-line properties (kinematics, fluxes, and equivalent widths), and spectral indices (e.g., D4000 and the Lick indices). We find that the DAP provides robust measurements and errors for the vast majority ($>$99%) of analyzed spectra. We summarize assessments of the precision and accuracy of our measurements as a function of signal-to-noise, and provide specific guidance to users regarding the limitations of the data. The MaNGA DAP software is publicly available and we encourage community involvement in its development.