Do you want to publish a course? Click here

Constraining $1+mathcal{J}to 2$ coupled-channel amplitudes in finite-volume

68   0   0.0 ( 0 )
 Added by Jozef Dudek
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Whether one is interested in accessing the excited spectrum of hadrons or testing the standard model of particle physics, electroweak transition processes involving multi-hadron channels in the final state play an important role in a variety of experiments. Presently the primary theoretical tool with which one can study such reactions is lattice QCD, which is defined in a finite spacetime volume. In this work, we investigate the feasibility of implementing existing finite-volume formalism in realistic lattice QCD calculation of reactions in which a stable hadron can transition to one of several two-hadron channels under the action of an external current. We provide a conceptual description of the coupled-channel transition formalism, a practical roadmap for carrying out a calculation, and an illustration of the approach using synthetic data for two non-trivial resonant toy models. The results provide a proof-of-principle that such reactions can indeed be constrained using modern-day lattice QCD calculations, motivating explicit computation in the near future.



rate research

Read More

We derive relations between finite-volume matrix elements and infinite-volume decay amplitudes, for processes with three spinless, degenerate and either identical or non-identical particles in the final state. This generalizes the Lellouch-Luscher relation for two-particle decays and provides a strategy for extracting three-hadron decay amplitudes using lattice QCD. Unlike for two particles, even in the simplest approximation, one must solve integral equations to obtain the physical decay amplitude, a consequence of the nontrivial finite-state interactions. We first derive the result in a simplified theory with three identical particles, and then present the generalizations needed to study phenomenologically relevant three-pion decays. The specific processes we discuss are the CP-violating $K to 3pi$ weak decay, the isospin-breaking $eta to 3pi$ QCD transition, and the electromagnetic $gamma^*to 3pi$ amplitudes that enter the calculation of the hadronic vacuum polarization contribution to muonic $g-2$.
We demonstrate that the leading and next-to-leading finite-volume effects in the evaluation of leptonic decay widths of pseudoscalar mesons at $O(alpha)$ are universal, i.e. they are independent of the structure of the meson. This is analogous to a similar result for the spectrum but with some fundamental differences, most notably the presence of infrared divergences in decay amplitudes. The leading non-universal, structure-dependent terms are of $O(1/L^2)$ (compared to the $O(1/L^3)$ leading non-universal corrections in the spectrum). We calculate the universal finite-volume effects, which requires an extension of previously developed techniques to include a dependence on an external three-momentum (in our case, the momentum of the final state lepton). The result can be included in the strategy proposed in Ref.,cite{Carrasco:2015xwa} for using lattice simulations to compute the decay widths at $O(alpha)$, with the remaining finite-volume effects starting at order $O(1/L^2)$. The methods developed in this paper can be generalised to other decay processes, most notably to semileptonic decays, and hence open the possibility of a new era in precision flavour physics.
A relation is presented between single-hadron long-range matrix elements defined in a finite Euclidean spacetime, and the corresponding infinite-volume Minkowski amplitudes. This relation is valid in the kinematic region where any number of two-hadron states can simultaneously go on shell, so that the effects of strongly-coupled intermediate channels are included. These channels can consist of non-identical particles with arbitrary intrinsic spins. The result accommodates general Lorentz structures as well as non-zero momentum transfer for the two external currents inserted between the single-hadron states. The formalism, therefore, generalizes the work by Christ et al.~[Phys.Rev. D91 114510 (2015)], and extends the reach of lattice quantum chromodynamics (QCD) to a wide class of new observables beyond meson mixing and rare decays. Applications include Compton scattering of the pion ($pi gamma^star to [pi pi, K overline K] to pi gamma^star$), kaon ($K gamma^star to [pi K, eta K] to K gamma^star$) and nucleon ($N gamma^star to N pi to N gamma^star$), as well as double-$beta$ decays, and radiative corrections to the single-$beta$ decay, of QCD-stable hadrons. The framework presented will further facilitate generalization of the result to studies of nuclear amplitudes involving two currents from lattice QCD.
We study the finite-volume correction on the hadronic vacuum polarization contribution to the muon g-2 ($a_mu^{rm hvp}$) in lattice QCD at (near) physical pion mass using two different volumes: $(5.4~{rm fm})^4$ and $(8.1~{rm fm})^4$. We use an optimized AMA technique for noise reduction on $N_f=2+1$ PACS gauge configurations with stout-smeared clover-Wilson fermion action and Iwasaki gauge action at a single lattice cut-off $a^{-1}=2.33$ GeV. The calculation is performed for the quark-connected light-quark contribution in the isospin symmetric limit. We take into account the effects of backward state propagation by extending a temporal boundary condition. In addition we study a quark-mass correction to tune to the exactly same physical pion mass on different volume and compare those correction with chiral perturbation. We find $10(26)times10^{-10}$ difference for light quark $a_mu^{rm hvp}$ between $(5.4~{rm fm})^4$ and $(8.1~{rm fm})^4$ lattice in 146 MeV pion.
165 - Akaki Rusetsky 2015
The volume-dependence of a shallow three-particle bound state in the cubic box with a size $L$ is studied. It is shown that, in the unitary limit, the energy-level shift from the infinite-volume position is given by $Delta E=c (kappa^2/m),(kappa L)^{-3/2}|A|^2 exp(-2kappa L/sqrt{3})$, where $kappa$ is the bound-state momentum and $|A|^2$ denotes the three-body analog of the asymptotic normalization constant, which encodes the information about the short-range interactions in the three-body system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا